12,883 research outputs found

    Model studies of fluctuations in the background for jets in heavy ion collisions

    Full text link
    Jets produced in high energy heavy ion collisions are quenched by the production of the quark gluon plasma. Measurements of these jets are influenced by the methods used to suppress and subtract the large, fluctuating background and the assumptions inherent in these methods. We compare the measurements of the background in Pb+Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV by the ALICE collaboration to calculations in TennGen (a data-driven random background generator) and PYTHIA Angantyr. The standard deviation of the energy in random cones in TennGen is approximately in agreement with the form predicted in the ALICE paper, with deviations of 1-6 %\%. The standard deviation of energy in random cones in Angantyr exceeds the same predictions by approximately 40 %\%. Deviations in both models can be explained by the assumption that the single particle d2N/dydpTd^2N/dydp_T is a Gamma distribution in the derivation of the prediction. This indicates that model comparisons are potentially sensitive to the treatment of the background

    Monte Carlo simulation of HIV-1 evolution in response to selection by antibodies

    Get PDF
    Held in conjunction with the 16th International Parallel and Distributed Processing Symposium Copyright © 2002 IEEE – All Rights ReservedThe persistence of human immunodeficiency virus type 1 (HIV-1) infection may be in part attributed to its ability to evolve to evade neutralizing antibody (NAb) surveillance. We have tested the prediction that positive selection of V3 is positively correlated with the strength of a patient’s NAb response by analyzing a data set containing both sequences from the principal neutralizing domain of HIV-1 (V3) and measures of the strength of the NAb responses of several patients. Only viral sequences from the patient with the strongest NAb response exhibited evidence of significant positive selection. To investigate the nature of selection by NAbs, we simulated the evolution of V3 at the nucleotide level. Two forms of plausible NAb selection were used: negative frequency-dependent selection and negative viral-age-dependent selection. Assuming negative age-dependent selection rather than negative frequency-dependent selection better simulated the temporal pattern of V3 variation from the patient with the strongest NAb response.Jack da Silva; Austin Hughe

    Multiphoton Processes in Driven Mesoscopic Systems

    Full text link
    We study the statistics of multi-photon absorption/emission processes in a mesoscopic ring threaded by an harmonic time-dependent flux Φ(t)\Phi(t). For this sake, we demonstrate a useful analogy between the Keldysh quantum kinetic equation for the electrons distribution function and a Continuous Time Random Walk in energy space with corrections due to interference effects. Studying the probability to absorb/emit nn quanta ω\hbar\omega per scattering event, we explore the crossover between ultra-quantum/low-intensity limit and quasi-classical/high-intensity regime, and the role of multiphoton processes in driving it.Comment: 6 pages, 5 figures, extended versio

    Genetic analysis of members of the species Oropouche virus and identification of a novel M segment sequence

    Get PDF
    Oropouche virus (OROV) is a public health threat in South America, and in particular Northern Brazil, causing frequent outbreaks of febrile illness. Using a combination of deep sequencing and Sanger sequencing approaches we have determined complete genome sequences of eight clinical isolates that were obtained from patient sera during an Oropouche fever outbreak in Amapa state, northern Brazil in 2009. We also report complete genome sequences of two OROV reassortants isolated from two marmosets in Minas Gerais state, southeast Brazil in 2012 that contain a novel M genome segment. Interestingly, all ten isolates posses a 947 nucleotide long S segment that lacks 11 residues in the S segment 3' UTR compared to the recently redetermined Brazilian prototype OROV strain BeAn19991. OROV maybe circulating more widely in Brazil and in the non-human primate population than previously appreciated and the identification of yet another reassortant highlights the importance of bunyavirus surveillance in South America

    Solution processable multi-channel ZnO nanowire field-effect transistors with organic gate dielectric

    Get PDF
    The present work focuses on nanowire (NW) applications as semiconducting elements in solution processable field-effect transistors (FETs) targeting large-area low-cost electronics. We address one of the main challenges related to NW deposition and alignment by using dielectrophoresis (DEP) to select multiple ZnO nanowires with the correct length, and to attract, orientate and position them in predefined substrate locations. High-performance top-gate ZnO NW FETs are demonstrated on glass substrates with organic gate dielectric layers and surround source–drain contacts. Such devices are hybrids, in which inorganic multiple single-crystal ZnO NWs and organic gate dielectric are synergic in a single system. Current–voltage (I–V) measurements of a representative hybrid device demonstrate excellent device performance with high on/off ratio of ~107, steep subthreshold swing (s-s) of ~400 mV/dec and high electron mobility of ~35 cm2 V−1 s−1 in N2 ambient. Stable device operation is demonstrated after 3 months of air exposure, where similar device parameters are extracted including on/off ratio of ~4 × 106, s-s ~500 mV/dec and field-effect mobility of ~28 cm2 V−1 s−1. These results demonstrate that DEP can be used to assemble multiples of NWs from solvent formulations to enable low-temperature hybrid transistor fabrication for large-area inexpensive electronics

    Prospects for ACT: simulations, power spectrum, and non-Gaussian analysis

    Full text link
    A new generation of instruments will reveal the microwave sky at high resolution. We focus on one of these, the Atacama Cosmology Telescope, which probes scales 1000<l<10000, where both primary and secondary anisotropies are important. Including lensing, thermal and kinetic Sunyaev-Zeldovich (SZ) effects, and extragalactic point sources, we simulate the telescope's observations of the CMB in three channels, then extract the power spectra of these components in a multifrequency analysis. We present results for various cases, differing in assumed knowledge of the contaminating point sources. We find that both radio and infrared point sources are important, but can be effectively eliminated from the power spectrum given three (or more) channels and a good understanding of their frequency dependence. However, improper treatment of the scatter in the point source frequency dependence relation may introduce a large systematic bias. Even if all thermal SZ and point source effects are eliminated, the kinetic SZ effect remains and corrupts measurements of the primordial slope and amplitude on small scales. We discuss the non-Gaussianity of the one-point probability distribution function as a way to constrain the kinetic SZ effect, and we develop a method for distinguishing this effect from the CMB in a window where they overlap. This method provides an independent constraint on the variance of the CMB in that window and is complementary to the power spectrum analysis.Comment: 22 pages, 11 figures. Submitted to New Astronomy. High resolution figures provided at http://www.princeton.edu/~khuffenb/pubs/prospects-act.htm

    Far infrared and Radio emission in dusty starburst galaxies

    Full text link
    We revisit the nature of the FIR/Radio correlation by means of the most recent models for star forming galaxies. We model the IR emission with our population synthesis code, GRASIL (Silva et al. 1998). As for the radio emission, we revisit the simple model of Condon & Yin (1990). We find that a tightFIR/Radio correlation is natural when the synchrotron mechanism dominates over the inverse Compton, and the electrons cooling time is shorter than the fading time of the supernova rate. Observations indicate that both these conditions are met in star forming galaxies. However since the radio non thermal emission is delayed, deviations are expected both in the early phases of a starburst, when the radio thermal component dominates, and in the post-starburst phase, when the bulk of the NT component originates from less massive stars. This delay allows the analysis of obscured starbursts with a time resolution of a few tens of Myrs, unreachable with other star formation indicators. We suggest to complement the analysis of the deviations from the FIR/Radio correlation with the radio slope to obtain characteristic parameters of the burst. The analysis of a sample of compact ULIRGs shows that they are intense but transient starbursts, to which one should not apply usual SF indicators devised for constant SF rates. We also discuss the possibility of using the q- radio slope diagram to asses the presence of obscured AGN. A firm prediction of the models is an apparent radio excess during the post-starburst phase, which seems to be typical of a class of star forming galaxies in rich cluster cores. We discuss how deviations from the correlation, due to the evolutionary status of the starburst, affect the technique of photometric redshift determination widely used for high-z sources.Comment: accepted by A&A, 16 page

    Urban integration of aeroelastic belt for low-energy wind harvesting

    Get PDF
    In this modern age low-energy devices are pervasive especially when considering their applications in the built-environment. The multitude of low-energy applications extend from wireless sensors, radio-frequency transceivers, charging devices, cameras and other small-scale electronic devices. The energy consumptions of these devices range in the milliwatt and microwatt scale which is a result of continuous development of these technologies. Thus, renewable wind energy harnessed from the aeroelastic effect can play a pivotal role in providing sufficient power for extended operation with little or no battery replacement. An aeroelastic belt is a simple device composed of a tensioned membrane coupled to electromagnetic coils and power conditioning components. This simplicity of the aeroelastic belt translates to its low cost and overall modularity. The aim of this study is to investigate the potential of integrating the aeroelastic belt into the built environment using Computational Fluid Dynamics (CFD) simulations. The work will investigate the effect of various external conditions (wind speed, wind direction and physical parameters, positioning and sizing) on the performance of the aeroelastic belt. The results from this study can be used for the design and integration of low-energy wind generation technologies into buildings
    corecore