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Oropouche virus (ORQV) is a public health threat in South America, and in particular in northern
Brazil, causing frequent outbreaks of febrile illness. Using a combination of deep sequencing and
Sanger sequencing approaches, we determined the complete genome sequences of eight clinical
isolates that were obtained from patient sera during an Oropouche fever outbreak in Amapa state,
northern Brazil, in 2009. We also report the complete genome sequences of two OROV
reassortants isolatd from two marmosets in Minas Gerais state, south-east Brazil, in 2012 that

contained a novel M genome segment. Interestingly, all 10 isolates possessed a 947 nt S
segment that lacked 11 residues in the S-segment 3’ UTR compared with the recently
redetermined Brazilian prototype OROV strain BeAn19991. OROV maybe circulating more
widely in Brazil and in the non-human primate population than previously appreciated, and the
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identification of yet another reassortant highlights the importance of bunyavirus surveillance in

INTRODUCTION

Oropouche virus (OROV) is a midge-borne orthobunya-
virus that causes a febrile illness in humans throughout
northern South America. The virus is endemic to Brazil
and to date all major outbreaks have been limited to the
northern region of the country. The largest known OROV
outbreak was recorded in 1980 in the state of Para with an
estimated 100 000 cases (Anderson et al., 1961; Borborema
et al., 1982; Dixon et al., 1981; LeDuc et al., 1981; Pinheiro
et al., 1976; Pinheiro, 1962; Vasconcelos et al., 1989). Due
to the similarity of signs and symptoms to other endemic
viral diseases such as dengue, chikungunya and Mayaro
fevers and the lack of a differential surveillance system, the

The GenBank/EMBL/DDBJ accession numbers for the sequences
reported in this paper are KP691603-KP691632.

Four supplementary tables are available with the online Supplementary
Material.

burden of OROV on the Brazilian public health system
and economy remains unclear. In an urban environment,
the midge Culicoides paraensis transmits OROV among
humans (Pinheiro et al, 1981, 1982; Roberts et al., 1977),
whilst in the tropical forest the virus has been isolated from
the pale-throated three-toed sloth (Bradypus tridactylus)
and the black-tufted marmoset (Callithrix penicillata),
although the vectors are largely unknown (Nunes et al,
2005a; Pinheiro et al., 1976).

OROV belongs to the genus Orthobunyavirus, the largest of
the five genera in the family Bunyaviridae, which contains
several other important human and veterinary pathogens
such as La Crosse, Akabane, Cache Valley and Schmallen-
berg viruses (Elliott, 2014). OROV is classified in the
Simbu serogroup and, like all bunyaviruses, contains a
tripartite negative-sense RNA genome. The large (L)
segment encodes the viral polymerase, the medium (M)
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segment encodes the viral glycoproteins Gn and Gg, and a
nonstructural protein, NSm, and the small (S) segment
codes for the viral nucleocapsid protein (N) and a second
non-structural protein (NSs) from overlapping ORFs
(Elliott, 2014; Elliott & Blakqori, 2011). Recently, we
reported the complete genome sequence for the prototype
Brazilian OROV strain BeAn19991 (GenBank accession
numbers KP052850-KP052852). Our analysis corrected
several errors in the previously published OROV genome
sequences, most notably that the S segment was 958 nt and
not the originally published 754 nt (Acrani et al, 2014).

Here, we report the complete genome sequences of eight
clinical isolates of OROV and two primate-derived OROV
reassortants. The M segment of the reassortant virus was a
unique Simbu sequence that fell in the same clade as the
Jatobal virus (JATV) M segment. All 10 isolates contained S
segments that were 11 nt shorter than the BeAn19991
strain. To our knowledge, this is the first report of
complete genome sequences for OROV field isolates, and
we discuss the importance of this in terms of understand-
ing the evolutionary history of the virus.

RESULTS

Complete genome sequence of OROV clinical
isolates

OROV isolates BeH759021, BeH759022, BeH759024,
BeH759025, BeH759040, BeH759146, BeH759529 and
BeH759620 represent a small portion of OROV samples
that were obtained from febrile humans between June and
August 2009 in the town of Mazagao, Amapa state, Brazil
(Table 1, Fig. 1). The mean age of the patients was 26.5 years
and all had presented a similar clinical picture characterized
by fever, headache, arthralgia, myalgia and ocular pain.
Genome sequences for these isolates were generated by de
novo assembly of 1058075 trimmed and filtered sequence
reads obtained using a Roche 454 sequencer.

The mean S-segment contig length was 867 bases, and by
mapping the sequence reads to reference strain BeAn19991 S
segment (GenBank accession no. KP052852), we obtained
complete S-segment sequences of 947 bases. All S segments
were therefore 11 nt shorter than that of the redetermined
BeAn19991 strain (Acrani et al., 2014). Ligation of extracted
RNA (see Methods) followed by Sanger sequencing was used
to confirm the UTR sequences. This revealed that all these
isolates lacked nt 781-791 in the S segment of BeAn19991.
Additional differences were observed at positions G750A,
A754G, C771T, T820C and T888C, resulting in 92.6% 3’
UTR similarity with BeAn19991 (Fig. 2a). However, despite
these differences, promoter activity was similar to that of
BeAn19991 (Fig. 2b) when tested in a minigenome assay
(Acrani et al., 2014). At the nucleotide level, the N-coding
region of these isolates was 95 % similar to that of BeAn19991,
but there was 100% conservation of the translated protein
sequence. Unlike in BeAn19991, the NSs-coding region
contains tandem AUG translational start codons (a feature

Table 1. Information about samples sequenced in this study

GenBank accession nos

State Town Age (years) Gender Source

Country

Host

Isolation date

ID

Sample

KP691606-KP691608
KP691609-KP691611

Serum

18
39
24
23
48
31

Mazagao

Amapa

Brazil
Brazil
Brazil
Brazil

Human
Human
Human
Human
Human
Human
Human
Human

23/07/2009
24/07/2009

AMA 2076

BeH759021

Serum

Mazagao

Amapa

AMA 2077

BeH759022
BeH759024
BeH759025
BeH759040
BeH759146

KP691603-KP691605

Serum

Mazagao

Amapa

24/07/2009
24/07/2009

AMA 2079

KP691612-KP691614
KP691615-KP691617
KP691630-KP691632
KP691618-KP691620
KP691621-KP691623

KP691624-KP691626

Serum

Mazagao

Amapa

AMA 2080

Serum

Mazagao

Amapa

Brazil
Brazil
Brazil
Brazil
Brazil
Brazil

23/07/2009
20/08/2009

AMA 2095

Serum

Mazagao

Amapa

AMA 2337

Serum

13
16
NA

Mazagao

Amapa

17/06/2009
23/06/2009

AMA 2238

BeH759529
BeH759620

Serum

Mazagao

Amapa

AMA 2329

Viscera

NA

Perdoes
Perdoes

Minas Gerais

Callitrhix penicillata

PR 4837 2012

PR 4843

BeAn789726

KP691627-KP691629

NA NA Viscera

Minas Gerais

Callitrhix penicillata

2012

BeAn790177

M, male; F, female; NA, not applicable.
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Perdoes, 2012 (primate isolates) 4

Fig. 1. Location of samples sequenced in this study. The map also shows lquitos and Madre de Dios in Peru where OROV M
segment reassortants were isolated, and Tucurui, a municipality in Para, Brazil, where JATV was isolated. AC, Acre; AM, Amazonas;
AP, Amapa; BA, Bahia; CE, Ceara; GO, Goias; MA, Maranhao; MG, Minas Gerais; MS, Mato Grosso do Sul; MT, Mato Grosso; PA,
Para; PI, Piaui; PR, Parana; RO, Rondonia; RR, Roraima; SC, Santa Catarina; SP, Sao Paulo; RS, Rio Grande do Sul; TO, Tocantins.

of many other orthobunyaviruses; Dunn et al., 1994), caused
by C/U variation at nt 56. The NSs ORFs of the human
isolates also had a difference at position 332 (A—G), resulting
in a Gln—Arg change in the NSs protein at position 89.

The amino acid sequences of the M- and L-segment-encoded
proteins of the human isolates were 98.5 and 98.0 % similar
to the M- and L-segment proteins of BeAn19991, respect-
ively. We were unable to obtain the terminal sequences of the
M and L segments from the deep sequencing data, and
therefore 3’ rapid amplification of ¢cDNA ends (RACE)
analysis was used. The clinical isolates displayed 99 %
similarity among each other across the complete L and M
segments, but all had identical UTR sequences that showed
90 and 96% similarity to the L- and M-segment UTRs,
respectively, of BeAn19991 (Fig. 2c¢).

Complete sequence of a novel Simbu virus M
segment

The sequences of BeAn789726 and BeAn790177, isolates
from two black-tufted marmosets (Callithrix penicillata),
were obtained using deep sequencing and 3’ RACE analysis.

The L and S segments showed 99 and 100% similarity,
respectively, to those of the eight clinical isolates. Unex-
pectedly, the M segment showed only about 56 % similarity at
the nucleotide level to other OROV M-segment sequences
(about 48 % at the amino acid level). There was, however, a
higher similarity with JATV M segment, strain BeAn423380
(GenBank accession no. AFI24667; 71.6 % at the nucleotide
level and 76.5% at the amino acid level). Alignment of
the UTR sequences in Fig. 2(c) shows the 11 nt terminal
consensus sequence with the conserved C/A mismatch at
position 9/—9. This novel M segment was 4418 nt and
encoded a 1417 aa polyprotein. Between BeAn790177 and
BeAn789726, we observed two nucleotide differences, a silent
mutation at position 1676 (U in An790177, C in An789726),
and a second at position 1856 (G in An790177, U in
An789726) that caused an amino acid change in the translated
protein sequence of K or N at position 611 in the polyprotein.

Phylogenetic analysis

To determine the phylogenetic relationship of the newly
sequenced isolates within the Simbu serogroup, we compared
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(@

L segment 1

|
BeAn19991 AGTAGTGTAC TCCTATTTCG AAACAAACAA AAACAATCTC AAA
BeH759022 (lhiS sludy) AGTAGTGTAC TCCTATTTCA AAACAAACAA AAACAATCTC AAA

6803

|
BeAn19991 GGTATACACA TGTAAAAGTA GTGTTTGTTT CTAAATAGGA GCACACTACT - 6852
BeH759022 (this study) GEGTATATGCA TGTAAAAGTA GTGTTTGTTT CTAAATAGGA GCACACTACT - 6852

M segment
4295
|
BeAn19991 ATTTGGCTAA AAAGGGTAGG
BeH759022 (this study) ATTTAGCTAA AAAGGGTAGG

CAGGTCTAAA
CAGGCCTAAA

BeAn19991 AGTCAAAAAT TGTTGTTGGT
BeH759022 (this study) AGTCAAAAAT TGTTGTTGGT

AGCACACTAC
AGCACACTAC

T - 4385
T - 4385

S segment
741

|
BeAn19991 TGGAGTACAG TAAACAAATA
BeH759022 (this study) TGGAGTACAA TAAGCAAATA

AAATATAAAA
AAATATAAAA

CACAAAAAAA
TACAAAAAAA

CAACAAAAAA

BeAn19991 TAACAAAAAT ACAAAAAAAT
BeH759022 (this study) TAACAAAAAT ACAAAAAAAC

TAAAAAATAT
TAAAAAATAT

ATAAAATAAA
ATAAAATAAA

TAAAAAAAGT
TAAAAAAAGT

BeAn19991 AAAAAAAGAA CTGCAGCTGT
BeH759022 (this study) AAAAAAAGAA CTGCAGCTGT

AATATTATAA
AATATTACAA

AGGGTTGGGT
AGGGTTGGGT

GGTTGGGGAA
GGTTGGGGAA

BeAn19991 TTTTAGAAAA CGTATTTTTG
BeH759022 (this study) TTTTAGAAAA CGTATTTTTG

AATTGGGAGC
AATTGGGAGC

ACACTACT - 958
ACACTACT - 946

(b) 3000-

20004

10004

Fold induction

Control (no L) BeAn19991

S-segment UTR

This study

ATCAGGTATA AATAAAATTC ATATAAATAA
ATCAGGTATA AATAAAATCC ATATAAATAA

L emszn

TeTGRTOAARATOTIACS
[N v 8520t

crTcaaa

H759022 (this study)

AGAAATAAAA 3-TCATCACACG
[N [N
- GAAATAAAA &\ cragrara
GCGAAAGCAC | UTR
GCGAAAGCAC
OROV
& -TCATCACACGA|TGGTTGTTGTTAAAAACTGA
AGCTATGTCA [ o N N Il j4385nt
AGOTATGTCA 5 - AGTAGTGTACT|RCCAGCAACAAACAGTGACR
1aTv
F-TCATCACACGA TGTTTCTATAAAATA
[ [ [ [N j437gm
5-AGTAGTGTACT| AAAGAATTTTACA

"1 J 4403t

T Jaatsnt

—

¥ -TCATCACACGEA
[N o
§-AGTAGTGTACT

H759022 (this study)

Fig. 2. Comparison of UTR sequences. (a) Comparison of the UTRs of BeH759022 isolate (chosen as a representative of the
clinical isolates) with OROV strain BeAn19991. The bases in red highlight differences between BeAn19991 and BeH759022.
(b) Minigenome assay. Comparison of S-segment-based minigenomes containing the S UTR of OROV BeAn19991 or the S
UTR of the newly sequenced isolates. BSR-T7/5 cells were transfected with pTM1OROV-L and pTM1OROV-N plasmids
expressing the L and N proteins, respectively, in addition to an S-segment-minigenome-expressing plasmid and pTM1-FF-Luc
expressing firefly luciferase as an internal control. The control cells lacked pTM1OROV-L. Minigenome activity was expressed
as fold induction over the background control. (c) Comparison of the M-segment UTRs of the novel M segment (BeAn790177)
with those of OROV, Iquitos virus (IQTV), Madre de Dios virus (MDDV) and JATV. The C/A mismatch is highlighted in red. The
dotted line indicates the extent of the conserved terminal sequence.

all available Simbu serogroup virus sequences of the three
structural genes, L, M polyprotein and N (Table S1, available
in the online Supplementary Material). The eight Amapa
state clinical isolates cluster as OROV strains for all L, M
polyprotein and N genes (Fig. 3). Pairwise comparisons of
the polymerase amino acid sequence for all 10 isolates

revealed a pairwise p-distance of 2% towards BeAn19991,
but the closest relationship was with Iquitos virus (IQTV)
L protein (Fig. 4a). The glycoprotein precursor of the
eight clinical isolates had a pairwise p-distance value of
1% towards BeAn19991 (Fig. 4a); however, with samples
BeAn790177 and BeAn789726, the glycoprotein gene

http.//virsgmjournals.org
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Fig. 3. Phylogenetic trees of the Simbu serogroup viruses. The trees were recreated using a maximum-likelihood method based
on the general time reversible model (GTR) with five rate categories and assuming sites are evolutionary invariable, for the L
gene (a), the GTR model with discrete gamma distribution for the M polyprotein gene (b) and the Tamura three-parameter
model with discrete gamma distribution for the N gene (c). Bars, number of nucleotide substitutions per site. Positions with
lower than 95 % site coverage were eliminated. Alignment and analysis were conducted in MEGAG (Tamura et al., 2013) and final
trees were created using FigTree v.1.4.2.

clustered in a clade close to JATV (Fig. 3b) with an amino
acid pairwise p-distance value of 21 % compared with 48—
49 % with IQTV, OROV and Madre de Dios virus (MDDV)
(Fig. 4a). A pairwise sliding-window analysis (Fig. 4b) of
BeAn790177, IQTV (strain 1QT9924), MDDV (strain FMD1303)
and JATV (strain BeAn423380) was performed to analyse
the level of similarity in the M polyprotein in comparison
with OROV (strain BeAn19991). The highest level of
similarity between OROV and BeAn790177 occurred
between amino acid positions 1141 and 1341.

Genetic relationships among members of the
species Oropouche virus

OROV showed two clearly identifiable clades for the L and
M genes supported by high bootstrap and posterior proba-
bilities (Fig. 5a, b). The trees were topologically different,
especially with respect to the M gene of isolates BeAn790177
and BeAn789726, which clustered with high support with
JATV (BeAn423380) (Fig. 5b). Interestingly, the Amapa clinical
isolates in the L-gene tree clustered with IQTV (1QT9924)

1640

Journal of General Virology 96



Bio'sjeusnofwbsin/:dny

OROV (BeAn19991) o Nucleoprotein
OROV (IQT1690)

M'g;z N [ BeH759022
4

JATV BeAn790177
o —- —

OROV (BeAn19991) <
OROV (IQT1690)

1QTV <
MDDV «
JATV
uTiv
0 10 20 30 40 50 60

Amino acid p-distance (%)

Nucleoprotein

@
Pol
OROV (BeAn19991) oymerase OROV (BeAn19991) 4] M polyprotein
OROV (IQT1690) OROV (IQT1690) 4 I"
larv 1QTV
MDDV + l MDDV A
VR S— JATV
UTIV < I" UTIV 1
OROV (BeAn19991) OROV (BeAn19991)
OROV (IQT1690) OROV (IQT1690)
1aTv 1aTVv
MDDV MDDV
JATV JATV
UTIV UTIv
0 10 20 30 40 50 60 0 10 20 30
Amino acid p-distance (%) Amino acid p-distance (%)
(b) Polymerase ! ! Polyprotein
100% 100 - 100 - . :
OROV 1
o5 4 95 :
1
90 4 90 o
~ 851 85 -
S
< 1
£ g0 4 80 i
S 1
E 1
» 75 4 75 1 1
1 1
1 1
70 o 70 4 1 1
1 1
1 1
4 65 o | |
65 1 1
1 1
- 60 60 7 Trrh T
Position ° 300 450 BQ0 750

(aa)

150 3
300 9
450 3
600 3

IQTV ARQMCK SKSW
MDDV ARQMCK SKSW
OROV ARQMCK SKSW

JATV. ARSMCK SKTS

H759022 ARQMCK SKSW
An790177 ARSMCKSKVS

ILMEF |BPIH GERMYKLSEL ADEF A
ILMEF IEPIE GERMYKLSEL
ILMEF 18PIH GERMYKLEEL
IHLSFIWPLE GEKEYKLSEL
ILMEF 18Pl GERMYKLEEL
ITLSFIAPLN GEREYKLSEL

Qv HYKMGLK | L
MDDV HYKMGLRVEL
OROV HYRBGLKIBL
JATV. HARRGLK | ES
H759022 HYRBGLK I BL

WMTNKCGTC| CGFSEQQSSG FEYEVFLKDM
MTNRCGTC!I CGFNEQQSSG FEYEIFLKDM
BTNRCGSC!| CGFDEQQ@SSG FEYENFLKDM
TNKCGTC!| CGFNQEIRSG FDYE[lFIKDM
TNKCGSC| CGFNEQQSSG FEYE[l FLKDM

An790177 HMKENLK I§S METNKCGTC! CGFNQEIRSG FDYEVFlIkom HESEESCKYN YIINYSFY.K lLLllLLl

100 =

95 o

90 o

85 o

80 o

75 4
— |QTV

70 1 — MDDV
- JATV

65 — BeH759022 (this study)
— BeAn790177 (this study)

0 T T T T T 1
0 20 40 60 80 100 120 140 160 180 200

Transmembrane domain

LEER NI FKEL.FEEE YRScsMcGL |

NiFKELF YRSCSMCGL |
M1l FNELF YRSCSMCGL |
NMFFNELY FRIECSFCEM |
LEEN MIFNELF YRSCSMCGL |
WLENM!F FRECSFECDM I

L9l
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Fig. 5. Phylogenetic trees of viruses comprising members of the species Oropouche virus. (a) Maximum-likelihood phylogeny of the L gene with bootstrap support/Bayesian
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substitutions per site. Clades A-D are indicated.
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Table 2. Summary of RDP analysis to determine potential reassortant isolates

Reassort- Breakpoint positions Reassortment Minor Major Detection method
ment sequence(s) parental parental
event In In sequence(s) sequence(s)
number alignment  reassortment
sequence
Begin End Begin End RDP GENECONV  Bootscan Maxchi  Chimaera SiSscan 3Seq
1 1 7481 1 7452 BeAn790177, H759620, BeAn423380 NS 5.47E—30 NS 9.21E—91 7.86E—67 3.35E—13 5.74E—27
BeAn789726 TVP-19255,
H759040
FMD_1303,
BeH759024,
BeAn19991,
BeH759146,
BeH759021,
BeH759025,
BeH759529,
BeH759022
2 7443 1 7416 1 1QT9924 Unknown BeH759022, 4.84E—13 2.40E—13 4.13E—12 2.43E—54 1.09E—44 251E—10 8.81E—20
(BeAn19991)  BeH759040,
BeH759024,
BeH759146,
BeH759021,
BeH759025,
BeH759529,
BeH759620
3 7368 52 7341 52 BeH759024, BeAn19991 IQT1690 2.31E—57 1.15E—54 2.79E—58 6.96E—26 7.96E—25 5.79E—43 4.92E—48
BeH759040,
BeH759146,
BeH759021,
BeH759025,
BeH759529,
BeH759022,
BeH759620
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Table 2. cont.

BeH543760,
BeAn19991,
BeH498913,
BeAR366927,
PPS_523_Be
H_669315,
BeH708139,
BeH_521086,
BeH543100,
BeH472435,
BeH543629,
BeAn_208819,
BeH707287,
BeH708717,
BeAr19886,
BeAn626990,
PMO Be H682426,
BeAR136921,
PMO BeH682431

Reassort- Breakpoint positions Reassortment Minor Major Detection method
ment sequence(s) parental parental
event In In sequence(s) sequence(s)
number alignment  reassortment
sequence
Begin End Begin  End RDP GENECONV  Bootscan =~ Maxchi  Chimaera SiSscan 3Seq
4 7469 6833 1361 728 BeH472433, BeH390242, 1QT1690, 2.18E—08 3.79E—08 9.52E—12 1.98E—12 1.33E—07 3.99E—16 1.56E—11
BeH355173, BeH389865 BeAn789726,
BeAn_208402, 1QT9924,
PPS_522_H_669314, BeAn790177

NS, Not significant.
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BeAn423380

lBe_An_84785

A A A
_{TVP-1 9255 BB B
FMD_1303 ‘B B B
IQT1690 [C|//D|/D
1QT9924 EHEE
—l| (H759146 [clD1[D]
H759620 [ o ] o] o]
H759025 cC//D D
H759040 [ClD[D]
l[H759024 [ o]
H759021 [ClDlD]
L H759529 1D [
H759022 Cc//D D
An789726 E - B
An790177 A B
BeH707287 ‘DD D
H708717 'D//D| D
L|PPS_523_H_669315 |5} Bl 1Bl
H543629 ‘DD D
H532500 ‘DD D
[l PPS_522_H_669314151 5N 1Bl
H708139 ‘DD D
BeH121923 'D/D!'D
H385591 ‘DD D
l PMOH_682431 |5l 51 IBH
PMOH_682426 151 51 1IN
H532422 D/D!'D
H532314 ‘DD D
H498913 ‘DD D
H472433 ‘DD D
H390242 'D|//D| D
BeH355173 'D/D!'D
BeAn_208402  [1BN =1 23
H505768 ‘DD D
BeH_521086 |5l M BN
AR136921 'D//D| D
AR366927 'D/D!'D
BeAn_626990 [1B1 121 B3
[BeAn19991 'D//D D
H543100 'D|//D| D
BeAn_206119 1B 151 B3
[H389865 'D/D!'D
BeAn_208819 [1BH 21 123
BeH29090 ‘DD D
BeAr19886 'DI/D!'D
H472435 'D//D!'D
H532490 ‘DD D
BeH541140 |15 D1 D
l H543760 DD/ D
BeH29086 ‘DD D
—PanAn48878

Fig. 6. Reassortment among viruses compris-
ing the species Oropouche virus. Maximum-
likelihood phylogeny of the L segment with
each isolate annotated with their clade assign-
ment (A-D) according to the L-, M- and S-
segment phylogenies. The different patterns
represent the different interclade reassort-
ments: pattern 1, C-D-D; pattern 2, C-B-D;
pattern 3, C-A-D; pattern 4, D. lIsolates
sequenced in this paper are highlighted in red.

and the Peruvian OROV isolate (IQT1690) with high
bootstrap support and posterior probability (100 and 1,
respectively) (Fig. 5a). The N-gene phylogeny on the other
hand was less resolved, with most isolates belonging to a
single clade and all being closely related (Fig. 5¢). Using a
dataset of concatenated genes for each isolate, analysis with
the Recombination Detection Program (RDP) recognized
four reassortment events with breakpoints close to the gene

boundaries, with 33 isolates identified as reassortants (Table
2). Three of these reassortment events were well supported
by the gene phylogenies and formed three different mosaic
patterns: (i) IQT1690, BeH759021, BeH759022, BeH759024,
BeH759025, BeH759040, BeH759146, BeH759529 and
BeH759620; (ii) 1QT9924; and (iii) BeAn790177 and
BeAn789726. These isolates represented inter-clade reassor-
tants (Fig. 6). The fourth reassortment event (Table 2)
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suggested an intra-clade (D) reassortment, for which there
was less phylogenetic support.

DISCUSSION

OROV causes a febrile illness in the South American human
population, with more than half a million cases reported in
Brazil in the last 59 years, and although the annual OROV
incidence in the country is unknown, sporadic cases are
constantly being picked up, making it a major public health
problem. Recently, we corrected the complete genome of
the Brazilian prototypic OROV reference strain BeAn19991
(Acrani et al.,, 2014), a strain that was isolated originally
from a pale-throated three-toed sloth (Bradypus tridactylus)
in 1960 (Pinheiro et al., 1981). In this study, we have described
the complete genomic sequences for 10 field samples isolated
more recently in Brazil (eight from humans and two from
non-human primates), revealing new phylogenetic informa-
tion on OROV. Phylogenetic analysis of the N gene of
several OROV isolates carried out by Saeed et al. (2000),
and subsequently by several other groups, classified OROV
into four genotypes (Aguilar et al, 2011; Azevedo et al,
2007; Nunes et al., 2005a, b; Vasconcelos et al., 2009, 2011).
However, the bootstrap values for this classification into four
distinct genotypes did not give strong support, prompting us
to reanalyse all available OROV sequences in GenBank, along
with our newly sequenced field isolates. Our analysis revealed
that the N-gene tree lacks structure and that the previously
classified genotypes are not clearly distinguishable. The N
gene is more conserved compared with the L and M genes
where it is possible to distinguish two clades.

Vasconcelos et al. (2011) analysed the genetic evolution
and dispersal of OROV in South America using samples
from 1961 to 2009, the first study aimed at understanding
the molecular epidemiology of this human pathogen.
However, the results have to be treated with caution as the
authors utilized only partial genetic information from each
gene and not complete sequences. In the current analyses,
complete sequences were analysed. We observed that the S
segment 3’ UTR of the field isolates differed from that of
BeAn19991 quite significantly (Fig. 2a; residues 781-791
were missing) in both the human and primate virus
samples, which were isolated in different geographical
regions and at different times (Table 1). For the M-segment
UTRs, we noted that the field isolates differed from
BeAn19991 at positions G4299A, T4319C and T4343C,
whilst for the L segment the differences were observed at
G20A, C6809T and A6810G. These findings highlight the
need to consider UTR sequences, in addition to coding
sequences, when trying to understand the evolutionary
history of a virus. Advances in nucleotide sequencing
technology mean that full-genome determination is now
feasible on a routine basis. The loss of 11 residues in the S
segment is intriguing, although it appeared to have no
effect on the UTR function when analysed using our
minigenome system (Acrani et al., 2014) (Fig. 2b). Previous
work, however, has demonstrated that internal deletions in

the S-segment UTRs of Bunyamwera virus (BUNV) do not
affect virus viability but do interfere with replication
causing growth attenuation in cell culture (Lowen &
Elliott, 2005). Similar results have also been shown for the
BUNV M- and L-segment UTRs (Mazel-Sanchez & Elliott,
2012). The apparent natural deletion of these 11 residues
could be important for virus replication efficiency and
virus fitness, both in vitro and in vivo, and are worth
pursuing further.

Another interesting finding was the identification of a novel
Simbu serogroup virus M segment, in samples BeAn790177
and BeAn789726, obtained from the primate Callithrix
penicillata. These viruses were isolated in Minas Gerais state,
south-east Brazil, 7 years after OROV was first described in
this area (Nunes et al., 2005a). Interestingly, the OROV
isolate (BeAn626990, GenBank accession no. AY117135)
described by Nunes et al. (2005a) was also isolated from
Callithrix penicillata. The S segment of BeAn626990 had a
92 9% pairwise sequence identity to the S segments of
BeAn790177 and BeAn789726, and clustered separately in
the phylogenetic tree (Fig. 5¢). L and M sequence infor-
mation for sample BeAn626990 is currently unavailable,
but this virus was identified as OROV based on complement
fixation tests that measure antibody responses against the N
protein, similar to the way in which the viruses in this study
were initially identified as OROV isolates. The fact that
OROV has been detected in the area twice is of concern, as it
would suggest that the virus is stably circulating in the
marmoset population in a region where currently OROV or
other Simbu virus outbreaks have not been reported. For
epidemiological and phylogenetic research purposes, sequen-
cing of all three segments is crucial so that reassortants such as
this are detected. Genetic reassortment is common among
segmented viruses such as bunyaviruses (Briese et al., 2013).
IQTV and MDDV, both isolated from febrile patients in
Peru in 1999 and 2007, respectively, contain L and S
segments highly similar to those of OROV, but with M
segments that cluster further away from OROV in a sister
clade (Aguilar et al, 2011; Briese et al., 2013; Ladner et al,
2014). The L and S segments of the primate-derived virus in
this report revealed a similar level of nucleotide identity to
that of OROV and IQTYV, whilst the M segment was unique
and clustered close to JATV. JATV was originally isolated
in 1985 from a ring-tailed coati (Nasua nasua) in Para,
Brazil (Figueiredo & Da Rosa, 1988). In 2001, the S and M
segments of JATV were sequenced, classifying this virus as a
potential OROV reassortant based on the fact that its N and
NSs proteins encoded by the S segment were highly similar
to OROV isolates from Peru and that its M segment was
unique (Saeed et al., 2001). Recent deep sequencing on the
same JATV virus stock now suggests that the S, M and L
segments of JATV are more divergent from OROV than
initially thought (Ladner et al., 2014). Based on our genetic
analysis of the BeAn790177 and BeAn789726 M segments
and the significant distance to OROV, IQTV, MDDV and
JATV, we propose naming this isolate Perddes virus, after
the municipality in which it was isolated.
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In this study, we classified the viruses currently comprising
the species Oropouche virus into clades A, B and D. IQTV
fell into its own clade C for the L gene; however, it
clustered in clades B and D for the M and N genes,
respectively (Fig. 6). In a recent analysis of the species
Manzanilla and Oropouche virus, Ladner et al. (2014)
suggested that Manzanilla and Utinga viruses could be
thought of as distinct strains of a single virus owing to the
level of genetic similarity among current members. The
authors suggest that this may not be applicable to the
species Oropouche virus due to the level of M segment
differences (Table S3). However, it is possible that these
viruses also represent different strains of the same virus but
with a higher degree of M-segment divergence. Unlike the
L- and S-segment-encoded proteins that function together
in RNA synthesis and hence potentially co-evolve together,
the M segment codes for the Gc and Gn envelope
glycoproteins that are entry binding proteins as well as
being major antigenic targets. Selective pressure to produce
viable virus in different host species and in different
geographical settings could potentially result in higher
levels of variation in the M segment. If this were true, we
would assume that the non-structural NSm ORF would
remain more conserved, and would expect a higher level of
variation in the Gn and Gc proteins. It is also interesting
to note that most bunyavirus reassortants tend to contain
M segments from as-yet-unknown donors (Briese et al,
2013). Pairwise, sliding-window distance analysis of OROV
(BeAn19991) and the possible reassortants IQTV, MDDV,
JATV and Perdoes virus (BeAn790177) indicated an almost
equidistant position between IQTV and MDDV, and
between the more distant JATV and BeAn790177, with
the lowest similarity scores in the N terminus of Gn protein
(positions 1-200, Fig. 4b). The similarity pattern for the
NSm and Gc ORFs was constant, maintaining the distance
between IQTV/MDDYV and JATV/An790177 almost unchanged
until residue 950, where a sudden variation of sequence
divergence could suggest possible recombination. From
residues 950 to 1200, we observed a higher degree of
variation within a single viral genome for each virus, with a
higher percentage of divergence when compared with the
rest of the protein. However, this was the region with the
highest degree of similarity among all four viral sequences
(except OROV), in contrast to what is observed in the rest of
the protein, which could suggest that this particular region is
subjected to more selective pressure and prone to a higher
degree of conservation. It could also suggest that at some
point during evolution they all shared the same sequence
with a common ancestor, and the distribution to different
geographical regions, such as Brazil (Para, Amazonas, Acre,
Rondobnia, Amapa Maranhdo, Tocantins, Minas Gerais),
Peru and Venezuela, to different hosts (humans, Bradypus
trydactulus, Callithrix sp. and wild birds) and to different
invertebrate vectors (Culicoides paraensis, Culex quinquefas-
ciatus, Coquillettidia venezuelensis and Ochlerotatus serratus)
allowed a higher degree of variation through natural
selection in the whole M segment, but not in this region,
nor in the S and L segments (Baisley et al., 1998; Nunes et al.,

2005a; Pinheiro et al., 1982; Vasconcelos et al., 2009). This
analysis of the amino acid sequences could suggest that these
five viruses are all variants of a single species, contrary to the
proposal of Ladner et al. (2014) based on the nucleotide
sequence. It is interesting that the two viruses closer to
OROV (IQTV and MDDV) are human isolates, whilst the
ones more distant in this analysis were isolated from animals
(JATV and An790177), potentially explaining the different
selective pressure and the degree of similarity among these
viruses. Whatever the case, OROV, at least for now, is more
successful as a human pathogen, and further surveillance of
orthobunyaviruses in South America could potentially shed
more light on the evolution of the species Oropouche virus.

METHODS

Cells and virus. Vero-E6 cells were grown in Dulbecco’s modified
Eagle’s medium supplemented with 10% FCS. BSR-T7/5 cells that
stably express bacteriophage T7 RNA polymerase (Buchholz et al.,
1999) were supplied by K. K. Conzelmann (Max von Pettenkofer-
Institute, Munich, Germany) and were grown in Glasgow minimal
essential medium supplemented with 10 % tryptose phosphate broth,
10% FCS and 1 mg G418 ml™'. Samples used in this study were
obtained from the World Health Organization Reference Centre for
Arboviruses at the Department of Arbovirology and Hemorrhagic
Fevers, Instituto Evandro Chagas (Ananindeua, Brazil). The eight
clinical strains of OROV were obtained originally from human
patients in 2009 in the municipality of Mazagao, Amapa state,
northern Brazil, and had previously been passaged three times in
Vero-E6 cells. Viral isolates PR4843 BeAN790177 and PR4837
BeAN789726 were isolated from liver samples collected from two
separate Callithrix penicillata found dead in the municipality of
Perddes, Minas Gerais state, in 2012. A suspension of monkey
viscera prepared with PBS (pH 7.4) and antibiotics (penicillin and
streptomycin) was used to inject suckling mice (Mus musculus) via
the intracranial route. Animals were observed daily and collected
immediately when disease was evident. A suspension of mouse brain
in PBS was then used to infect Vero-E6 cells and virus was harvested
72 h post-infection. Table 1 and Fig. 1 describe the viral isolates used
in the study and the geographical locations.

All experiments with infectious viruses were conducted under Biosafety
Level 3 conditions.

RNA extraction, and genome sequencing and assembling.
Virus was harvested and filtered through a 0.2 um sterile filter and
concentrated using polyethylene glycol 8000. The virus aggregate was
resuspended in 500 pl PBS and treated with 25 U pl~' Benzonase
(Novagen) for 30 min at 37 °C. RNA was extracted using TRIzol
reagent (Invitrogen) according to the manufacturer’s protocol and
quantified on a Qubit 2.0 Fluorometer (Invitrogen). The genomes
were obtained using the following basic steps: (i) ¢cDNA synthesis
using random primers (cDNA Synthesis kit; Roche Life Science); (ii)
library preparation (second-strand cDNA synthesis and emulsion
PCR); and (iii) nucleotide sequencing using both GS FLX 454 (Roche
Life Science) and Ion Torrent (Life Technologies) as described
previously (Margulies et al., 2005; Rothberg et al., 2011). The SSF
(Standard Flowgram Format) files generated by the GS FLX 454 and
Ion Torrent machines containing the sequencing trace data were
transferred onto a Linux-based computer for analysis. De novo DNA
sequence assemblers Newbler v.2.6 (GS Assembler, 454 sequencing,
Roche) and Celera were used to assemble reads. Adaptors were first
trimmed from generated reads and then assembled to generate
contigs. These contigs were then compared against sequences in
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GenBank by performing a BLASTX search. Using the top hit generated
by BLASTX as a reference sequence, reads were assembled against this to
generate more contigs using GS Reference Mapper Software (Roche).
Parameters were left at default. Sequences were evaluated for
homopolymers before attempting to fill gaps in the genome by the
mapping reference method in CLC Genomics Workbench 6 (CLC
bio). Scaffold sequences from a consensus of reads and contigs were
generated and evaluated before generating the final genome sequence.

Sanger sequencing. Sufficient reads could not be generated to
complete the L and M segments of samples BeH759024, BeH759529,
BeH759620 and BeH759146, and so the incomplete regions were
sequenced via Sanger sequencing. Briefly, reverse transcription-PCR
was performed using 10 pl TRIzol-extracted RNA and segment-
specific forward or reverse primers, with Moloney murine leukemia
virus (M-MLV) reverse transcriptase (Promega). PCR was carried out
using KOD Hot Start DNA polymerase (Merck) and the amplified
products were purified from agarose gel using a gel extraction kit
(Wizard kit; Promega), following the manufacturer’s protocol. Entire
M segments were amplified using previously described primers
OROVMFg and OROVMRg (Acrani et al, 2014) and products were
directly sequenced (Table S4). The L segments were amplified as two
separate fragments as described previously for BeAN19991 (Acrani
et al., 2014) [primers OROVLFg and Ama3082LR (this study),
Ama2930LF (this study) and OROVLRg]. Products were cloned
separately into the pGEM-T Easy cloning vector and nucleotide
sequences were determined using the T7 F and SP6 primers in the first
genome walking reaction (Table S4).

Sequencing the viral 5" and 3’ termini. As described previously
(Acrani et al., 2014), total cellular RNA from cells infected with the
virus was extracted using TRIzol reagent (Invitrogen) at 48 h post-
infection. Both the genomic and anti-genomic 3’ ends were obtained
by RACE analysis. RNA was polyadenylated (Ambion) for 1 h at
37 °C and then purified using an RNeasy mini kit (Qiagen). Twelve
microlitres of this polyadenylated RNA was then used in a reverse
transcription reaction with M-MLV reverse transcriptase (Promega)
and Oligo d(T)-Anchor primer (Table S4), followed by a PCR using a
PCR Anchor primer and a segment-specific primer (Table S4) with
KOD Hot Start DNA polymerase (Merck). Amplified products were
gel extracted and purified using a gel extraction kit (Promega Wizard
kit), followed by Sanger sequencing.

RNA ligation was carried out by denaturing the RNA at 90 °C for
3 min, and the 3" and 5" ends were then ligated using T4 RNA ligase
(New England Biolabs) for 2 h at 37 °C. The reaction was heat
inactivated at 65 °C and purified using an RNeasy Mini kit (Qiagen).
cDNA was synthesized using M-MVL reverse transcriptase (Promega)
and primer OROSIligl (Table S4). PCR was performed using KOD
Hot Start DNA polymerase (Merck) and primers OROSligl and
OROSlig2 (Table S4). The PCR products were gel purified and their
nucleotide sequences determined.

Minigenome assay. The OROV minigenome assay was performed
as described previously (Acrani et al, 2014). In brief, subconfluent
monolayers of BSR-T7/5 cells in 24-well plates were transfected with
250 ng expression plasmids pTM1OROV-L and pTM1OROV-N,
125 ng S-segment-based minigenome plasmid and 25 ng pTM1-FF-
Luc (Weber et al,, 2001). At 24 h post-transfection, Renilla and firefly
luciferase activities were measured using a Dual-Luciferase Reporter
Assay kit (Promega).

Phylogenetic analysis. Phylogenetic analysis of the 10 isolate
sequences was first conducted with available Simbu serogroup viruses
(Table S1). The L-, M- and S-segment coding regions were aligned
using the MUSCLE algorithm in MEGA6.06 (Tamura et al, 2013). A
model test was then performed on this alignment, and the best DNA

substitution model was used to generate the phylogenetic trees for the
L, glycoprotein and N ORFs using a maximum-likelihood method in
MEGA6.06 (Tamura et al., 2013), with 1000 bootstrap replicates. Final
trees were recreated using FigTree v.1.4.2. Furthermore, a separate
analysis of all 10 isolates along with all OROV isolates was conducted.
For this, all OROV sequences were downloaded from GenBank and
compiled to include a single sequence for each isolate. Each gene
segment was aligned according to the protein alignment using CLUSTAL
Omega (Sievers et al., 2011) and PAL2NAL (Suyama et al, 2006). Phylo-
genetic analyses were reconstructed using the general time reversible
(GTR) + GAMMA +1 substitution model as selected by the Bayesian
Information Criterion (BIC) in jModeltest (Darriba et al, 2012).
Maximum-likelihood phylogenies were generated in Phyml (Guindon
et al., 2010) using 1000 bootstrap replicates and Bayesian tree recon-
struction was carried out using MrBayes (Ronquist & Huelsenbeck,
2003) across four chains for 2 million generations sampling every 100
generations, and stationarity was determined from examination of the
log likelihoods and the convergence diagnostics. Trees recovered prior
to stationarity being reached were discarded, and Bayesian posterior
probabilities of each bipartition, representing the percentage of times
each node was recovered, were calculated from a 50 % majority rule
consensus of the remaining trees.

Reassortant and genetic divergence analysis. To examine
reassortment, all genes were concatenated for isolates that had
complete genomes and the concatenated alignment was analysed in
RDP3 (Martin et al., 2010) using the various built-in recombination
analysis methods. Genetic distances were calculated at the amino acid
level using a pairwise p-distance method with complete deletion in
MEGA6.06 (Tamura et al., 2013). A pairwise sliding-window analysis
for the M segment at the amino acid level was performed using
SimPlot v.3.5.1 (Lole et al, 1999). Using a 200 bp window, 20 bp
step, Kimura (two-parameter) and 1000 bootstrap replications,
results were plotted in Prism 6.2.
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