983 research outputs found

    CO2 emissions in the Amazon: are bottom-up estimates from land use and cover datasets consistent with top-down estimates based on atmospheric measurements?

    Get PDF
    Amazon forests are the largest forests in the tropics and play a fundamental role for regional and global ecosystem service provision. However, they are under threat primarily from deforestation. Amazonia's carbon balance trend reflects the condition of its forests. There are different approaches to estimate large-scale carbon balances, including top-down (e.g., CO2 atmospheric measurements combined with atmospheric transport information) and bottom-up (e.g., land use and cover change (LUCC) data based on remote sensing methods). It is important to understand their similarities and differences. Here we provide bottom-up LUCC estimates and determine to what extent they are consistent with recent top-down flux estimates during 2010 to 2018 for the Brazilian Amazon. We combine LUCC datasets resulting in annual LUCC maps from 2010 to 2018 with emissions and removals for each LUCC, and compare the resulting CO2 estimates with top-down estimates based on atmospheric measurements. We take into account forest carbon stock maps for estimating loss processes, and carbon uptake of regenerating and mature forests. In the bottom-up approach total CO2 emissions (2010 to 2018), deforestation and degradation are the largest contributing processes accounting for 58% (4.3 PgCO2) and 37% (2.7 PgCO2) respectively. Looking at the total carbon uptake, primary forests play a dominant role accounting for 79% (−5.9 PgCO2) and secondary forest growth for 17% (−1.2 PgCO2). Overall, according to our bottom-up estimates the Brazilian Amazon is a carbon sink until 2014 and a source from 2015 to 2018. In contrast according to the top-down approach the Brazilian Amazon is a source during the entire period. Both approaches estimate largest emissions in 2016. During the period where flux signs are the same (2015–2018) top-down estimates are approximately 3 times larger in 2015–2016 than bottom-up estimates while in 2017–2018 there is closer agreement. There is some agreement between the approaches–notably that the Brazilian Amazon has been a source during 2015–2018 however there are also disagreements. Generally, emissions estimated by the bottom-up approach tend to be lower. Understanding the differences will help improve both approaches and our understanding of the Amazon carbon cycle under human pressure and climate change

    Fire Responses to the 2010 and 2015/2016 Amazonian Droughts

    Get PDF
    Extreme droughts in Amazonia cause anomalous increase in fire occurrence, disrupting the stability of environmental, social, and economic systems. Thus, understanding how droughts affect fire patterns in this region is essential for anticipating and planning actions for remediation of possible impacts. Focused on the Brazilian Amazon biome, we investigated fire responses to the 2010 and 2015/2016 Amazonian droughts using remote sensing data. Our results revealed that the 2015/2016 drought surpassed the 2010 drought in intensity and extent. During the 2010 drought, we found a maximum area of 846,800 km2 (24% of the Brazilian Amazon biome) with significant (p ≀ 0.05) rainfall decrease in the first trimester, while during the 2015/2016 the maximum area reached 1,702,800 km2 (47% of the Brazilian Amazon biome) in the last trimester of 2015. On the other hand, the 2010 drought had a maximum area of 840,400 km2 (23% of the Brazilian Amazon biome) with significant (p ≀ 0.05) land surface temperature increase in the first trimester, while during the 2015/2016 drought the maximum area was 2,188,800 km2 (61% of the Brazilian Amazon biome) in the last trimester of 2015. Unlike the 2010 drought, during the 2015/2016 drought, significant positive anomalies of active fire and CO2 emissions occurred mainly during the wet season, between October 2015 and March 2016. During the 2010 drought, positive active fire anomalies resulted from the simultaneous increase of burned forest, non-forest vegetation and productive lands. During the 2015/2016 drought, however, this increase was dominated by burned forests. The two analyzed droughts emitted together 0.47 Pg CO2, with 0.23 Pg CO2 in 2010, 0.15 Pg CO2 in 2015 and 0.09 Pg CO2 in 2016, which represented, respectively, 209%, 136%, 82% of annual Brazil’s national target for reducing carbon emissions from deforestation by 2017 (approximately 0.11 Pg CO2 year-1 from 2006 to 2017). Finally, we anticipate that the increase of fires during the droughts showed here may intensify and can become more frequent in Amazonia due to changes in climatic variability if no regulations on fire use are implemented

    Land use still matters after deforestation

    Get PDF
    Careful management of deforested Amazonian land cannot replace, but must complement, efforts to preserve the rainforest. Sustainable agricultural practices that promote diverse uses can help minimise climate and environmental impacts.Peer reviewe

    Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change

    Get PDF
    Tropical secondary forests sequester carbon up to 20 times faster than old-growth forests. This rate does not capture spatial regrowth patterns due to environmental and disturbance drivers. Here we quantify the influence of such drivers on the rate and spatial patterns of regrowth in the Brazilian Amazon using satellite data. Carbon sequestration rates of young secondary forests (<20 years) in the west are ~60% higher (3.0 ± 1.0 Mg C ha−1 yr−1) compared to those in the east (1.3 ± 0.3 Mg C ha−1 yr−1). Disturbances reduce regrowth rates by 8–55%. The 2017 secondary forest carbon stock, of 294 Tg C, could be 8% higher by avoiding fires and repeated deforestation. Maintaining the 2017 secondary forest area has the potential to accumulate ~19.0 Tg C yr−1 until 2030, contributing ~5.5% to Brazil’s 2030 net emissions reduction target. Implementing legal mechanisms to protect and expand secondary forests whilst supporting old-growth conservation is, therefore, key to realising their potential as a nature-based climate solution

    The drivers and impacts of Amazon forest degradation

    Get PDF
    BACKGROUND: Most analyses of land-use and land-cover change in the Amazon forest have focused on the causes and effects of deforestation. However, anthropogenic disturbances cause degradation of the remaining Amazon forest and threaten their future. Among such disturbances, the most important are edge effects (due to deforestation and the resulting habitat fragmentation), timber extraction, fire, and extreme droughts that have been intensified by human-induced climate change. We synthesize knowledge on these disturbances that lead to Amazon forest degradation, including their causes and impacts, possible future extents, and some of the interventions required to curb them. ADVANCES: Analysis of existing data on the extent of fire, edge effects, and timber extraction between 2001 and 2018 reveals that 0.36 ×106 km2 (5.5%) of the Amazon forest is under some form of degradation, which corresponds to 112% of the total area deforested in that period. Adding data on extreme droughts increases the estimate of total degraded area to 2.5 ×106 km2, or 38% of the remaining Amazonian forests. Estimated carbon loss from these forest disturbances ranges from 0.05 to 0.20 Pg C year−1 and is comparable to carbon loss from deforestation (0.06 to 0.21 Pg C year−1). Disturbances can bring about as much biodiversity loss as deforestation itself, and forests degraded by fire and timber extraction can have a 2 to 34% reduction in dry-season evapotranspiration. The underlying drivers of disturbances (e.g., agricultural expansion or demand for timber) generate material benefits for a restricted group of regional and global actors, whereas the burdens permeate across a broad range of scales and social groups ranging from nearby forest dwellers to urban residents of Andean countries. First-order 2050 projections indicate that the four main disturbances will remain a major threat and source of carbon fluxes to the atmosphere, independent of deforestation trajectories. OUTLOOK: Whereas some disturbances such as edge effects can be tackled by curbing deforestation, others, like constraining the increase in extreme droughts, require additional measures, including global efforts to reduce greenhouse gas emissions. Curbing degradation will also require engaging with the diverse set of actors that promote it, operationalizing effective monitoring of different disturbances, and refining policy frameworks such as REDD+. These will all be supported by rapid and multidisciplinary advances in our socioenvironmental understanding of tropical forest degradation, providing a robust platform on which to co-construct appropriate policies and programs to curb it

    The drivers and impacts of Amazon forest degradation

    Get PDF
    Approximately 2.5 × 10 6 square kilometers of the Amazon forest are currently degraded by fire, edge effects, timber extraction, and/or extreme drought, representing 38% of all remaining forests in the region. Carbon emissions from this degradation total up to 0.2 petagrams of carbon per year (Pg C year −1 ), which is equivalent to, if not greater than, the emissions from Amazon deforestation (0.06 to 0.21 Pg C year −1 ). Amazon forest degradation can reduce dry-season evapotranspiration by up to 34% and cause as much biodiversity loss as deforestation in human-modified landscapes, generating uneven socioeconomic burdens, mainly to forest dwellers. Projections indicate that degradation will remain a dominant source of carbon emissions independent of deforestation rates. Policies to tackle degradation should be integrated with efforts to curb deforestation and complemented with innovative measures addressing the disturbances that degrade the Amazon forest

    Chapter 19: Drivers and Ecological Impacts of Deforestation and Forest Degradation

    Get PDF
    Deforestation, the complete removal of an area’s forest cover; and forest degradation, the significant loss of forest structure, functions, and processes; are the result of the interaction between various direct drivers, often operating in tandem. By 2018, the Amazon biome had lost approximately 870,000 km2 of its original forest cover, mainly due to agricultural expansion. Other direct drivers of forest loss include the opening of new roads, construction of hydroelectric dams, exploitation of minerals and oil, and urbanization. Impacts of deforestation range from local to global, including local changes in landscape configuration, climate, and biodiversity; regional impacts on hydrological cycles; and global increase of greenhouse gas emissions. Of the remaining Amazonian forests, 17% are degraded, corresponding to approximately 1,036,080 km2. Various anthropogenic drivers, including understory fires, edge effects, selective logging, hunting, and climate change can cause forest degradation. Degraded forests have significantly different structure, microclimate, and biodiversity as compared to undisturbed ones. These forests tend to have higher tree mortality, lower carbon stocks, more canopy gaps, higher temperatures, lower humidity, higher wind exposure, and exhibit compositional and functional shifts in both fauna and flora. Degraded forests can come to resemble their undisturbed counterparts, but this depends on the type, duration, intensity, and frequency of the disturbance event. In some cases, this may prohibit the return to a historic baseline. Avoiding further loss and degradation of Amazonian forests is crucial to ensure they continue to provide valuable and life-supporting ecosystem services

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality
    • 

    corecore