59 research outputs found

    Evolution of structure and function in Phenylalanine Hydroxylase. With the regulatory properties in sight

    Get PDF
    In the post-genomic era, an idea of how similar the genomes of different species actually are is on the horizon. Less than 10 years ago, the human genome was estimated to encode 100000 genes. That was an overestimation, as the real number of human genes is 20000-25000. Most genes are expressed as proteins. The 3D structure of a protein is more conserved than its sequence, and therefore the structural context of protein and gene evolution must not be forgotten. By its structure, the protein can propagate its function. In the early 90’s the estimated number of different protein structure classes, so called folds, was predicted to be about 10000. Today there are slightly above 1000 folds and the discovery of new folds has leveled off, despite an increase in the number of protein structures that have been solved over the last few years. Indeed, some folds are used for more than one function, and found in various functional contexts. Then, if the many components are so similar, how is the biological species divergence from same component genomes achieved? One way to study biological diversity is by dividing it into its smaller components, e.g. by studying protein or gene family evolution. Here the evolution and regulation of the aromatic amino acid hydroxylase (AAAHs) have been under examination. This gene family encodes the proteins phenylalanine hydroxylase (PAH), tyrosine hydroxylase (TH), and tryptophan hydroxylase (TPH). These enzymes are highly physiologically important. PAH, expressed in liver, regulates the homeostasis of L-Phe by hydroxylating it into L-Tyr. TH, expressed in the central nervous system, hydroxylates L-Tyr into L-Dopa. L-Dopa is part of two important pathways i) melanogenesis and ii) dopamine production. In humans, dysfunctions in PAH that cause elevated L-Phe concentration can result in phenylketonuria (PKU). Untreated PKU results in neurological damage. TPH produces a precursor of serotonin from LTrp. The end products of these enzymes are neurotransmitters and hormones with increasingly important functions, from e.g. amoeba to nematode to man. As PAH has evolved in mammals its regulation has become increasingly sophisticated, e.g. homotropic positive cooperativity that shifts the conformational equilibrium from dimeric to tetrameric is seen in the mammalian lineage. Nematode PAH is devoid of positive cooperativity, but resembles the tetrameric high-affinity and high-activity mammalian PAH. TH and TPH are always tetrameric and not allosterically regulated. Each AAAH subunit has a regulatory domain, a catalytic domain, and an oligomerization domain. The promotion of positive cooperativity in PAH has been investigated by comparing mammalian PAH to nematode PAH. The low-affinity and low-activity dimer as well as the high-affinity and high-activity tetramer of PAH were modeled. Sequence analysis on a nematode sequence cluster and a mammalian sequence cluster identified sites with high probability of being involved in functional divergence, e.g. change in regulation. Residue specific electrostatic interaction energies were calculated for all ionizible residues in the models. In general, we note important differences in the substrate binding pocket that aids to explain why the active site in nematode PAH is less dynamic than in mammalian PAH. Our results suggest a pathway for the positive cooperativity from one active site to another, involving various predicted hinge regions from human PAH, where we find the nematode PAH more rigid. The regulatory domain in PAH is part of the ACT domain family. The ACT domains are frequently found regulating metabolic enzymes in an allosteric manner. The allosteric effector is often an amino acid that binds to an interface formed by two ACT domains. No contacts are formed between two ACT domains and the stoichiometry of binding is 1:1 for L-Phe in PAH. Therefore the allosteric effect must originate in the active site when the substrate binds. An alternative pathway for aromatic amino acid biosynthesis is present in e.g. plants and bacteria. This pathway has an L-Phe binding ACT domain, which is homologous to the ACT domain in AAAH. The L-Phe binding motif in this domain is also conserved in PAH. A comparative structural analysis of this area shows why L-Phe may not bind in the AAAH regulatory domain and also indicates why it has remained. The ACT domain has an abundant fold, a superfold. A structural approach was used to identify more potential ACT domains to gain further insights to the functional properties that this domain could perform in general, and in PAH in particular. Here we note e.g. two interesting potential domain families that could be homologous to the ACT domain, namely the GlnB-like domains and heavy metal binding domains. The phylogeny of the AAAH family has not been resolved earlier given the lack of a suitable outgroup. As more genome sequences became available, we identified an outgroup candidate and had it experimentally characterized. The phylogeny was resolved, the ancestral function determined, and by comparing the chromosomal gene locations the order of events in AAAH evolution was envisioned

    Avoiding Regions Symptomatic of Conformational and Functional Flexibility to Identify Antiviral Targets in Current and Future Coronaviruses

    Get PDF
    Within the last 15 years, two related coronaviruses (Severe Acute Respiratory Syndrome [SARS]-CoV and Middle East Respiratory Syndrome [MERS]-CoV) expanded their host range to include humans, with increased virulence in their new host. Coronaviruses were recently found to have little intrinsic disorder compared with many other virus families. Because intrinsically disordered regions have been proposed to be important for rewiring interactions between virus and host, we investigated the conservation of intrinsic disorder and secondary structure in coronaviruses in an evolutionary context. We found that regions of intrinsic disorder are rarely conserved among different coronavirus protein families, with the primary exception of the nucleocapsid. Also, secondary structure predictions are only conserved across 50–80% of sites for most protein families, with the implication that 20–50% of sites do not have conserved secondary structure prediction. Furthermore, nonconserved structure sites are significantly less constrained in sequence divergence than either sites conserved in the secondary structure or sites conserved in loop. Avoiding regions symptomatic of conformational flexibility such as disordered sites and sites with nonconserved secondary structure to identify potential broad-specificity antiviral targets, only one sequence motif (five residues or longer) remains from the \u3e10,000 starting sites across all coronaviruses in this study. The identified sequence motif is found within the nonstructural protein (NSP) 12 and constitutes an antiviral target potentially effective against the present day and future coronaviruses. On shorter evolutionary timescales, the SARS and MERS clades have more sequence motifs fulfilling the criteria applied. Interestingly, many motifs map to NSP12 making this a prime target for coronavirus antivirals

    Potential RNA-dependent RNA polymerase inhibitors as prospective therapeutics against SARS-CoV-2

    Get PDF
    Introduction. The emergence of SARS-CoV-2 has taken humanity off guard. Following an outbreak of SARS-CoV in 2002, and MERS-CoV about 10 years later, SARS-CoV-2 is the third coronavirus in less than 20 years to cross the species barrier and start spreading by human-to-human transmission. It is the most infectious of the three, currently causing the COVID-19 pandemic. No treatment has been approved for COVID-19. We previously proposed targets that can serve as binding sites for antiviral drugs for multiple coronaviruses, and here we set out to find current drugs that can be repurposed as COVID-19 therapeutics. Aim. To identify drugs against COVID-19, we performed an in silico virtual screen with the US Food and Drug Administration (FDA)-approved drugs targeting the RNA-dependent RNA polymerase (RdRP), a critical enzyme for coronavirus replication. Methodology. Initially, no RdRP structure of SARS-CoV-2 was available. We performed basic sequence and structural analysis to determine if RdRP from SARS-CoV was a suitable replacement. We performed molecular dynamics simulations to generate multiple starting conformations that were used for the in silico virtual screen. During this work, a structure of RdRP from SARS-CoV-2 became available and was also included in the in silico virtual screen. Results. The virtual screen identified several drugs predicted to bind in the conserved RNA tunnel of RdRP, where many of the proposed targets were located. Among these candidates, quinupristin is particularly interesting because it is expected to bind across the RNA tunnel, blocking access from both sides and suggesting that it has the potential to arrest viral replication by preventing viral RNA synthesis. Quinupristin is an antibiotic that has been in clinical use for two decades and is known to cause relatively minor side effects. Conclusion. Quinupristin represents a potential anti-SARS-CoV-2 therapeutic. At present, we have no evidence that this drug is effective against SARS-CoV-2 but expect that the biomedical community will expeditiously follow up on our in silico findings

    Functional Diversification after Gene Duplication: Paralog Specific Regions of Structural Disorder and Phosphorylation in p53, p63, and p73

    Get PDF
    Conformational and functional flexibility promote protein evolvability. High evolvability allows related proteins to functionally diverge and perhaps to neostructuralize. p53 is a multifunctional protein frequently referred to as the Guardian of the Genome–a hub for e.g. incoming and outgoing signals in apoptosis and DNA repair. p53 has been found to be structurally disordered, an extreme form of conformational flexibility. Here, p53, and its paralogs p63 and p73, were studied for further insights into the evolutionary dynamics of structural disorder, secondary structure, and phosphorylation. This study is focused on the post gene duplication phase for the p53 family in vertebrates, but also visits the origin of the protein family and the early domain loss and gain events. Functional divergence, measured by rapid evolutionary dynamics of protein domains, structural properties, and phosphorylation propensity, is inferred across vertebrate p53 proteins, in p63 and p73 from fish, and between the three paralogs. In particular, structurally disordered regions are redistributed among paralogs, but within clades redistribution of structural disorder also appears to be an ongoing process. Despite its deemed importance as the Guardian of the Genome, p53 is indeed a protein with high evolvability as seen not only in rearranged structural disorder, but also in fluctuating domain sequence signatures among lineages

    Dynamic, but not necessarily disordered, human-virus interactions mediated through slims in viral proteins

    Get PDF
    Most viruses have small genomes that encode proteins needed to perform essential enzy-matic functions. Across virus families, primary enzyme functions are under functional constraint; however, secondary functions mediated by exposed protein surfaces that promote interactions with the host proteins may be less constrained. Viruses often form transient interactions with host proteins through conformationally flexible interfaces. Exposed flexible amino acid residues are known to evolve rapidly suggesting that secondary functions may generate diverse interaction potentials between viruses within the same viral family. One mechanism of interaction is viral mimicry through short linear motifs (SLiMs) that act as functional signatures in host proteins. Viral SLiMs display specific patterns of adjacent amino acids that resemble their host SLiMs and may occur by chance numerous times in viral proteins due to mutational and selective processes. Through mimicry of SLiMs in the host cell proteome, viruses can interfere with the protein interaction network of the host and utilize the host-cell machinery to their benefit. The overlap between rapidly evolving protein regions and the location of functionally critical SLiMs suggest that these motifs and their functional potential may be rapidly rewired causing variation in pathogenicity, infectivity, and virulence of related viruses. The following review provides an overview of known viral SLiMs with select examples of their role in the life cycle of a virus, and a discussion of the structural properties of experimentally validated SLiMs highlighting that a large portion of known viral SLiMs are devoid of predicted intrinsic disorder based on the viral SLiMs from the ELM database

    Paralog-Specific Patterns of Structural Disorder and Phosphorylation in the Vertebrate SH3–SH2–Tyrosine Kinase Protein Family

    Get PDF
    One of the largest multigene families in Metazoa are the tyrosine kinases (TKs). These are important multifunctional proteins that have evolved as dynamic switches that perform tyrosine phosphorylation and other noncatalytic activities regulated by various allosteric mechanisms. TKs interact with each other and with other molecules, ultimately activating and inhibiting different signaling pathways. TKs are implicated in cancer and almost 30 FDA-approved TK inhibitors are available. However, specific binding is a challenge when targeting an active site that has been conserved in multiple protein paralogs for millions of years. A cassette domain (CD) containing SH3–SH2–Tyrosine Kinase domains reoccurs in vertebrate nonreceptor TKs. Although part of the CD function is shared between TKs, it also presents TK specific features. Here, the evolutionary dynamics of sequence, structure, and phosphorylation across the CD in 17 TK paralogs have been investigated in a large-scale study. We establish that TKs often have ortholog-specific structural disorder and phosphorylation patterns, while secondary structure elements, as expected, are highly conserved. Further, domain-specific differences are at play. Notably, we found the catalytic domain to fluctuate more in certain secondary structure elements than the regulatory domains. By elucidating how different properties evolve after gene duplications and which properties are specifically conserved within orthologs, the mechanistic understanding of protein evolution is enriched and regions supposedly critical for functional divergence across paralogs are highlighted

    Piriform spider silk sequences reveal unique repetitive elements.

    Get PDF
    Orb-weaving spider silk fibers are assembled from very large, highly repetitive proteins. The repeated segments contain, in turn, short, simple, and repetitive amino acid motifs that account for the physical and mechanical properties of the assembled fiber. Of the six orb-weaver silk fibroins, the piriform silk that makes the attachment discs, which lashes the joints of the web and attaches dragline silk to surfaces, has not been previously characterized. Piriform silk protein cDNAs were isolated from phage libraries of three species: A. trifasciata, N. claVipes, and N. cruentata. The deduced amino acid sequences from these genes revealed two new repetitive motifs: an alternating proline motif, where every other amino acid is proline, and a glutamine-rich motif of 6-8 amino acids. Similar to other spider silk proteins, the repeated segments are large (>200 amino acids) and highly homogenized within a species. There is also substantial sequence similarity across the genes from the three species, with particular conservation of the repetitive motifs. Northern blot analysis revealed that the mRNA is larger than 11 kb and is expressed exclusively in the piriform glands of the spider. Phylogenetic analysis of the C-terminal regions of the new proteins with published spidroins robustly shows that the piriform sequences form an ortholog group

    CSpritz: accurate prediction of protein disorder segments with annotation for homology, secondary structure and linear motifs

    Get PDF
    CSpritz is a web server for the prediction of intrinsic protein disorder. It is a combination of previous Spritz with two novel orthogonal systems developed by our group (Punch and ESpritz). Punch is based on sequence and structural templates trained with support vector machines. ESpritz is an efficient single sequence method based on bidirectional recursive neural networks. Spritz was extended to filter predictions based on structural homologues. After extensive testing, predictions are combined by averaging their probabilities. The CSpritz website can elaborate single or multiple predictions for either short or long disorder. The server provides a global output page, for download and simultaneous statistics of all predictions. Links are provided to each individual protein where the amino acid sequence and disorder prediction are displayed along with statistics for the individual protein. As a novel feature, CSpritz provides information about structural homologues as well as secondary structure and short functional linear motifs in each disordered segment. Benchmarking was performed on the very recent CASP9 data, where CSpritz would have ranked consistently well with a Sw measure of 49.27 and AUC of 0.828. The server, together with help and methods pages including examples, are freely available at URL: http://protein.bio.unipd.it/cspritz/

    Vertebrate Vitellogenin Gene Duplication in Relation to the “3R Hypothesis”: Correlation to the Pelagic Egg and the Oceanic Radiation of Teleosts

    Get PDF
    The spiny ray-finned teleost fishes (Acanthomorpha) are the most successful group of vertebrates in terms of species diversity. Their meteoric radiation and speciation in the oceans during the late Cretaceous and Eocene epoch is unprecedented in vertebrate history, occurring in one third of the time for similar diversity to appear in the birds and mammals. The success of marine teleosts is even more remarkable considering their long freshwater ancestry, since it implies solving major physiological challenges when freely broadcasting their eggs in the hyper-osmotic conditions of seawater. Most extant marine teleosts spawn highly hydrated pelagic eggs, due to differential proteolysis of vitellogenin (Vtg)-derived yolk proteins. The maturational degradation of Vtg involves depolymerization of mainly the lipovitellin heavy chain (LvH) of one form of Vtg to generate a large pool of free amino acids (FAA 150–200 mM). This organic osmolyte pool drives hydration of the ooctye while still protected within the maternal ovary. In the present contribution, we have used Bayesian analysis to examine the evolution of vertebrate Vtg genes in relation to the “3R hypothesis” of whole genome duplication (WGD) and the functional end points of LvH degradation during oocyte maturation. We find that teleost Vtgs have experienced a post-R3 lineage-specific gene duplication to form paralogous clusters that correlate to the pelagic and benthic character of the eggs. Neo-functionalization allowed one paralogue to be proteolyzed to FAA driving hydration of the maturing oocytes, which pre-adapts them to the marine environment and causes them to float. The timing of these events matches the appearance of the Acanthomorpha in the fossil record. We discuss the significance of these adaptations in relation to ancestral physiological features, and propose that the neo-functionalization of duplicated Vtg genes was a key event in the evolution and success of the teleosts in the oceanic environment

    Heterologous expression of a novel drug transporter from the malaria parasite alters resistance to quinoline antimalarials

    Get PDF
    Antimalarial drug resistance hampers effective malaria treatment. Critical SNPs in a particular, putative amino acid transporter were recently linked to chloroquine (CQ) resistance in malaria parasites. Here, we show that this conserved protein (PF3D7_0629500 in Plasmodium falciparum; AAT1 in P. chabaudi) is a structural homologue of the yeast amino acid transporter Tat2p, which is known to mediate quinine uptake and toxicity. Heterologous expression of PF3D7_0629500 in yeast produced CQ hypersensitivity, coincident with increased CQ uptake. PF3D7_0629500-expressing cultures were also sensitized to related antimalarials; amodiaquine, mefloquine and particularly quinine. Drug sensitivity was reversed by introducing a SNP linked to CQ resistance in the parasite. Like Tat2p, PF3D7_0629500-dependent quinine hypersensitivity was suppressible with tryptophan, consistent with a common transport mechanism. A four-fold increase in quinine uptake by PF3D7_0629500 expressing cells was abolished by the resistance SNP. The parasite protein localised primarily to the yeast plasma membrane. Its expression varied between cells and this heterogeneity was used to show that high-expressing cell subpopulations were the most drug sensitive. The results reveal that the PF3D7_0629500 protein can determine the level of sensitivity to several major quinine-related antimalarials through an amino acid-inhibitable drug transport function. The potential clinical relevance is discussed
    corecore