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Abstract: Most viruses have small genomes that encode proteins needed to perform essential enzy-
matic functions. Across virus families, primary enzyme functions are under functional constraint;
however, secondary functions mediated by exposed protein surfaces that promote interactions with
the host proteins may be less constrained. Viruses often form transient interactions with host proteins
through conformationally flexible interfaces. Exposed flexible amino acid residues are known to
evolve rapidly suggesting that secondary functions may generate diverse interaction potentials
between viruses within the same viral family. One mechanism of interaction is viral mimicry through
short linear motifs (SLiMs) that act as functional signatures in host proteins. Viral SLiMs display
specific patterns of adjacent amino acids that resemble their host SLiMs and may occur by chance
numerous times in viral proteins due to mutational and selective processes. Through mimicry of
SLiMs in the host cell proteome, viruses can interfere with the protein interaction network of the host
and utilize the host-cell machinery to their benefit. The overlap between rapidly evolving protein
regions and the location of functionally critical SLiMs suggest that these motifs and their functional
potential may be rapidly rewired causing variation in pathogenicity, infectivity, and virulence of re-
lated viruses. The following review provides an overview of known viral SLiMs with select examples
of their role in the life cycle of a virus, and a discussion of the structural properties of experimentally
validated SLiMs highlighting that a large portion of known viral SLiMs are devoid of predicted
intrinsic disorder based on the viral SLiMs from the ELM database.

Keywords: short eukaryotic linear motifs; SLiMs; viral-host protein interaction; intrinsically disor-
dered protein regions; the ELM database

1. Introduction

Viruses are pathogens that cannot thrive outside a host [1,2]. Depending on the viral
family, genomic information is encoded in either positive or negative single-stranded or
double-stranded DNA or RNA. The genomic material is typically small, ranging from a
few kb to over 1000 kb [3]. Viruses exploit host cell proteins to complete their life cycle:
attachment, penetration, uncoating, replication and protein expression, assembly, and
egress from the infected cell [1]. The viral genome is translated into structural proteins,
non-structural proteins, and sometimes accessory proteins. Structural proteins encapsulate
the newly formed virus genome inside the host cell and provide the virion its shape. Non-
structural proteins (nsps) typically make up the genome replication complex and include
a polymerase that is dedicated to replicating the viral genome. Further, nsps partake
in protein processing and may also perform secondary functions involved in impacting
immune regulation and antiviral response. Accessory proteins are mainly regulatory
proteins primarily involved in modulating host cell gene expression, inducing apoptosis,
or affecting the viral rate of replication [4].
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Viruses have high mutation rates [5], which is particularly true with regard to RNA
viruses [6]. The fitness of RNA viruses depends on their RNA polymerases to replicate
the viral genome with low fidelity [7,8]. While the primary enzymatic functions typically
are under selective constraint, rapidly evolving amino acid residues are often located in
conformationally flexible regions on the surface of the protein. Surfaces of viral proteins are
major contact points to their hosts. Through interface mimicry, where a part of a viral pro-
tein surface resembles a host protein, the virus can interfere with protein-protein networks
of the host protein [9]. The presence of short linear motifs (SLiMs) that act as functional
signatures in proteins are important for understanding protein-protein interactions in an
organism. Identification of a SLiM from a host species in a viral protein suggests inter-
face mimicry that may disrupt endogenous protein-protein interactions. Many host-virus
mimicry-driven interactions are transient [10] and depend on the proteomic context of the
host cell. Consequently, exogeneous interactions may give rise to complex diversity in
virulence, pathogenicity, and transmissibility not only between different host species, but
also within the same host species.

1.1. Short Linear Motifs

Eukaryotic Linear Motifs (ELMs) (a.k.a. SLiMs) are small segments of proteins, usually
3 to 10 amino acids long with a specific cellular function [11,12]. Given the linear sequence
pattern that composes a SLiM, some positions in a SLiM can withstand various amino acid
substitutions without affecting functionality, while an amino acid substitution at a different,
critical position can eliminate all functionality. To represent sequence variation, SLiMs
are described by regular expressions using the one-letter amino acid abbreviations [13].
Virus proteins that display SLiMs can perform molecular interactions with host proteins
in a similar manner as the host protein it mimics [11]. SLiMs that occur in humans may
also occur by chance in viral proteins due to convergent evolution [10]. SLiMs can occur
in highly conserved protein regions or regions with a high evolutionary rate of amino
acid substitution. The presence of conserved motifs within the same virus family suggests
the existence of functionally important virus-host protein interactions. Conversely, the
presence of rapidly evolving motifs can enable the emergence of new protein-protein
interactions within different hosts [11,14].

1.2. SLiMs in Intrinsically Disordered Protein Regions

Intrinsically disordered regions (IDRs) lack a specific folded structure (order) and
harbor high conformational plasticity [15]. Linear motifs from eukaryotes were found to
be predominantly disordered based on prediction of intrinsic disorder [16]. Viral motifs
within intrinsically disordered protein regions (IDRs) can enable viral-host protein interac-
tions [2,11,12]. IDRs provide SLiMs malleability to interact with various target proteins
and to acquire different transient secondary structures that facilitate SLiM interaction with
another protein [11,15,17–19]. The plasticity of SLiMs has been proposed to impact viral
phenotypic traits such as tropism and virulence [20].

A positive correlation between disorder content and the occurrence of linear motifs
has been shown [11]. However, disorder content has been found to vary greatly between
virus families and coronaviruses have among the least [21]. Proteome-wide evolutionary
studies of coronaviruses revealed a highly disordered nucleocapsid protein while the other
proteins had almost no disorder [22]. Yet, from the large SARS-CoV-2 data that has been
accumulating over the last two years, it is apparent that coronaviruses like SARS-CoV-2
perform a wealth of interactions with proteins in its human host despite a low predicted
intrinsic disorder content.

2. Methods Used in the Discovery of SLiMs
2.1. Experimental Procedures

SLiMs are typically involved in transient protein-protein interactions (PPIs) with a
low affinity towards the interacting protein [23,24]. Thus, mass spectroscopic analysis of
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PPIs might be unable to detect the SLiMs’ temporary interactions in their normal mode;
more specific optimizations are needed [25]. Other methods that have been proposed
for the discovery and investigation of SLiM interactions are peptide phage display and
large-scale proteomic peptide phage display [26]. Phage display may be coupled with
site-directed mutagenesis to verify the interacting pattern. One major disadvantage of the
experimental methods exploring SLiMs on the peptide level is that the actual interaction
inside the cell might not be properly portrayed due to the absence of post-translational
protein modifications that are critical for the functionality of the SLiM [26].

2.2. Computational Approaches

Data from experimentally verified SLiMs can be used to make predictors or search
functions for similar motifs. Various webservers with databases of linear motifs provide a
search function for similar motifs using regular expression patterns (regex). According to
the ELM database [27], the regex pattern symbols used are as follows: dot “.” means that
this position permits the presence of any amino acid which can be symbolized by “x” as
well, square brackets “[ ]” mean any listed amino acid is accepted at that position, caret sign
inside a square bracket ”[ˆ]” means that any following amino acid is not allowed in this site,
curly brackets “{ }” specify the count or range of accepted amino acids at specific position in
the pattern, dollar sign “$” indicates the C-terminal end of the protein sequence, caret sign
“ˆ” indicates the N-terminal end of the protein, question mark “?” indicates one optional
amino acid (one or none), asterisk “*” specifies any number of optional amino acids is
allowed (zero or more), plus sign “+” indicates one or more amino acids are accepted, pipe
“|” separates and suggests an alternative amino acid pattern for the motif, and parentheses
“( )” can either be used to group pieces of pattern or to indicate an important amino acid
site such as covalently modified amino acids.

The ELM database is the prevalent resource for SLiMs. This database provides ex-
perimentally verified SLiMs classified as true positives [27]. SLiMs are categorized by
function as either cleavage, degradation, docking, ligand binding, modification, or target-
ing sites [27]. Cleavage sites (CLV) are patterns identified by different proteolytic enzymes.
Degradation sites (DEG) are sequences recognized for ubiquitination to allow subsequent
protein breakdown. Docking sites (DOC) are involved in regulating protein interaction.
Ligand binding sites (LIG) participate in protein-protein interactions. Modification sites
(MOD) include amino acid patterns predicted to undergo post-translational modification.
Targeting sites (TRG) act as signals for translocation of proteins [12,27].

Other resources are available, for instance SLiMSearch and MEME suite. SLiMSearch
is a webserver that allows the user to input a regex pattern or motif consensus sequence and
then choose the species where the motif is predicted to be found, along with other filtration
options such as disorder cutoff value. The results provide proteins that potentially include
the input motif with their predicted conservation score, relative disorder score, accessibility
prediction, PTM predictions at the motif site, the presence of known, mutational SNPs
in that region, and more data that can allow the user to filter the results based on their
needs [28]. MEME suite includes many tools and pipelines for de novo motif discovery and
searching for known motif patterns in your input dataset as well as performing enrichment
analyses and more [29].

A critical challenge for the computational techniques is their high false-positive
rate [12,30,31]. Filtration to reduce false positives include ensuring the SLiM is in a disor-
dered region is commonly recommended and integrated in some tools like SLiMSuite [32]
and IUPRED3 [33].

3. Are Viral SLiMs Disordered?

SLiMs from the ELM database were shown to be disordered using mean IUPRED
disorder scores (MIDS) [16,34]. IUPRED predicts a disorder score for amino acid residues
in proteins [35,36]. If the score for a residue is greater than 0.5, that residue is predicted to
be disordered. However, a cutoff of 0.4 has been shown to be in greater agreement with
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experimentally confirmed intrinsic disorder [16]. Considering a 0.4 cutoff, 78% [16] and
71% [34] of all motifs were found to have a MIDS above 0.4 indicating that some residues
in some motifs are likely ordered.

To the best of our knowledge no study has investigated the viral SLiMs separately.
With the large variation in disordered content in virus families [21], we were curious about
the disorder content in viral SLiMs. To investigate the disorder content of linear motifs
from viruses that are known to interact with host proteins, we undertook a brief study
in that respect. We downloaded the FASTA sequences for all 260 viral SLiMs classified
as true positives from the ELM database [27]. This dataset contains 131 LIG, 65 MOD,
38 TRG, 11 DOC, 11 CLV, and 4 DEG viral SLiM sites. For each sequence, we extracted
the motif plus 50 flanking amino acid residues on the N-terminal and C-terminal sides,
respectively. For sequences where the motif was located closer than 50 amino acid residues
from a terminal, all residues towards that terminal were included. The resulting sequence
fragments were used to predict intrinsic disorder with IUPRED2 [35,36] (default settings).
The predicted state was mapped to the corresponding position in each sequence using
an IUPRED disorder score cutoff of 0.4 (and 0.5 separately) to infer disorder or order.
Thereafter, the percentage of disordered residues for each motif region was calculated. We
also calculated MIDS per motif.

We found that 38% of the viral motifs are completely disordered and another 38% are
completely ordered based on IUPRED disorder scores with cutoff = 0.5. For the remain-
ing motifs, disorder content varies (Figure 1a). Based on IUPRED disorder scores with
cutoff = 0.4, 66 motifs (25%) are 100% ordered and 143 motifs (55%) are 100% disordered
(Figure 1b). The predominant motif classes vary between the fully ordered and the fully
disordered motifs. Of the fully disordered motifs, the predominant motifs are LIG (63%)
and TRG (18%). Of the fully ordered motifs, the predominant motif classes are MOD (62%)
and LIG (15%). MIDS revealed that >36% of all viral motifs had an average score below 0.4
(Figure 1c). These results suggest that screening for only disordered motifs may exclude a
large portion of functional viral motifs and especially sites that undergo post-translational
modification.

Further, we also predicted surface accessibility and secondary structure for the
260 viral motifs with NetSurfP-2.0 [37] with default settings. The NetSurfP-2.0 predic-
tions were used to infer “not alpha helix or beta strand” as coil and surface accessibility for
each residue in the motif. Thereafter, the fraction of coil and surface accessible residues for
each motif region was calculated. Most motifs are as expected surface accessible and tend
to lack secondary structure. From the 260 viral motifs, 175 motifs (67%) are 100% coil, and
221 motifs (85%) are completely surface accessible (Figure 1d,e).

Based on prediction of disorder, surface accessibility, and secondary structure, our
results suggest that a large portion of the true positive viral SLiMs are not disordered but a
clear majority are in a coil conformation and an even stronger signal is seen from prediction
of surface accessibility. Ultimately, these results, based on predictions of a limited set
of viral linear motifs known to interact with host proteins, imply that viral SLiMs may
not be as disordered as their analogous counterparts in eukaryotes. Further analyses are
warranted to establish how disorder content varies for the same SLiM in a virus and its
host. Here, we show selected examples of SLiMs that illustrate how disorder, surface
accessibility, and secondary structure may vary across related viruses.
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Figure 1. Predicted structural features of 260 viral SLiMs from the ELM database. The percentage of viral motifs with a
certain disorder content as inferred from IUPRED prediction using a cutoff of (a) 0.5 and (b) 0.4. (c) The percentage of viral
motifs with a certain Mean IUPRED Disorder Score (MIDS). The percentage of viral motifs with a certain (d) secondary
structure (coil) and (e) surface accessibility content as inferred from NetSurfP-2.0 prediction. The percentages shown are
approximate; rounded to the nearest whole number for a, b, d, and e, and to the nearest tenth for c. See also Table S1.

4. Select Viral SLiMs Involved in the Viral Life Cycle

The viral life cycle can be divided into events that occur outside the cell and inside the
infected cell. In a general viral lytic cycle (Figure 2), the virus must first attach and fuse to
the outside of the host cell before it can enter the cell. Then, the virus gets encapsulated or
penetrates the cell membrane. Next, the virus starts the process of replication and trans-
lating its proteins to produce more viruses that are capable of infecting other neighboring
cells. At this step, viral proteins hover inside the cell and migrate to several subcellular
locations. As for host proteins, the presence of SLiMs in viruses may aid in the shuttling
of viral proteins to different cellular compartments, where they can interact with various
host proteins [27]. Finally, the virus particles are assembled, followed by viral exit from the
infected cell [1].
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Figure 2. The general lytic virus life cycle inside the cells. (1) The virion attaches to the cell surface
receptors. (2) The penetration of the virus through endocytosis to the infected cell. (3) The replicated
genome and translated viral proteins inside the cell. (4) The newly assembled viruses inside the
cell. (5) The cell lysis and release of new viruses from the infected cell. Created with BioRender.com
(accessed on 30 October 2021).

4.1. SLiMs and Viral Cell Invasion through Cellular Attachment, Entry, and Fusion
4.1.1. RGD Motif, Integrin-Binding, and Attachment

The existence of specific motifs can enhance the ability of a virus to attach to the host
cell receptors. For instance, the presence of the RGD pattern in virus envelope or mem-
brane proteins, such as for Foot and Mouth disease virus (FMDV) [38] and Epstein-Barr
virus [39], may promote viral fusion with host cells by facilitating the interaction with
the integrin cell surface receptors [40]. Integrin receptors are transmembrane receptors
that are involved in various signaling pathways including cellular communication with
the surrounding environment. Several cell types, such as pneumocytes, endothelial cells,
and platelets, express integrin transmembrane receptors. When transmembrane integrin
receptors recognize and bind to a pattern of RGD amino acids present on extracellular
proteins, it can result in activation or inhibition of the integrin receptor’s signaling path-
ways [41]. RGD integrin-binding activates clathrin-mediated endocytosis in adenoviruses
and promotes virus entry into cells, triggering the phosphatidylinositol-3-kinase (PI3K)
and mitogen-activated protein kinase (MAPK) pathways inside the infected cells. PI3K
and MAPK are critical signaling pathways that control cell survival and proliferation [42].

The spike receptor-binding domain (RBD) from SARS-CoV-2 has an RGD motif that
thus far is not found in other closely related coronaviruses [43]. The motif shows a degree
of structural resemblance to other experimentally confirmed RGD-containing ligands and
proteins that can bind to integrin receptors. Although the motif is not completely solvent
accessible, it is located near a disordered protein region which may expose the RGD motif
in a subset of the conformational ensemble enough to enable integrin binding under some
conditions [44]. It has been speculated that the RGD motif could (1) promote the entry
of SARS-CoV-2 into cells not expressing the primary SARS-CoV-2 receptor, the ACE2
receptor [45], and (2) affect the infectivity of the SARS-CoV-2 virus [43,44] due to the
conformational flexibility surrounding the motif [44].

BioRender.com
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4.1.2. Furin Cleavage Motif Role in Viral Entry

To enhance cell entry, numerous viruses use a motif of the furin recognition pattern.
Furin is a ubiquitously expressed protease [46] that promotes splitting and activation
of various human extracellular proteins including hormones, growth factors, cellular
receptors, adhesion molecules, and more [47]. Furin recognition patterns, R.[RK]R., where
furin cleaves the protein after the last Arginine (R) in the pattern, have been confirmed
experimentally in HIV-1 [48], Coronaviruses [49], Flaviviruses [50], and other viruses
(discussed in [47]), and in some bacterial toxins such as Anthrax toxin [51] and Diphtheria
toxin [52].

In viruses, furin cleavage can lead to activation and facilitation of the viral fusion to
cellular receptors and cell entry [53,54]. In Flaviviruses, furin proteolysis of precursor mem-
brane (prM) protein is required to develop mature viruses [55]. In Orthomyxoviruses, such
as influenza viruses, hemagglutinin (HA) glycoprotein cleavage leads to activation of the
virus by unveiling the fusion peptide responsible for cell fusion and entry [56]. HA cleavage
in avian influenza viruses was found responsible for the increased pathogenicity [53].

The conservation of sequence, disorder, and accessibility of the furin cleavage motif in
HIV-1 [48] is high across sequences of HIV-1 envelope homologs suggesting a conserved
function (Figure 3).
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Figure 3. The furin cleavage site in the envelope glycoprotein from HIV. Sequences were identified with BLAST using the
envelope protein (accession: NP_057856.1) from HIV-1 as query. Sequence names shown in red represents true positive
instances from the ELM database [27]. The multiple sequence alignment (MSA) was built with MAFFT+L-INS-i [57] in
Jalview [58]. The regular expression pattern R.[RK]R. from motif CLV_PCSK_FUR_1 in the ELM database [27] was identified
using Find in Jalview, shown in black with white text. The region shown under Sequence shows the amino acids that
corresponds to the true positive motif from ENV_HIV1 plus one additional site on each side. The three additional heatmaps
display the same region of the alignment colored by property. The heatmap for Disorder propensity displays disordered
(magenta) or ordered (purple) residues based on IUPRED prediction with cutoff = 0.4 [35,36,59]. Heatmaps for (1) Surface
accessibility displays surface exposed (magenta) and buried (white) residues and (2) Secondary structure displays coil
(orange) and secondary structure (helix: blue, strand: magenta) based on NetSurfP-2.0 predictions.

In SARS-CoV-2, an additional furin cleavage site, absent in other closely related
coronaviruses, was detected in the spike protein using sequence-based methods and it
was suggested to be one of the principal causes of its pathogenicity [60]. Later, it was
shown that while furin plays a role in successful SARS-CoV-2 infection, it is not critical
for infection [61]. Further, other coronaviruses such as SARS-CoV also include furin
recognition sites in nearby regions, and some of them were experimentally verified to be
functional [62], which suggests that the exact position is not always critical for an analogous
function.

4.2. SLiMs Influencing Viral Cell Replication
4.2.1. Retinoblastoma-Binding LxCxE Motif

After viruses invade the host cell, the viral genome is unpacked, and genome repli-
cation is initiated. For viral replication to occur, tampering with the host cell machinery



Viruses 2021, 13, 2369 8 of 20

is often achieved by promoting degradation of host proteolytic enzymes responsible for
breaking down virus proteins, inhibiting degradation of host proteins essential for virus
survival, and altering the host cell cycle by forcing the cell to the S phase [2]. Viruses may
induce host cells to the S phase to facilitate their replication through the RB-binding LxCxE
motif. Retinoblastoma proteins (RBs) are tumor suppressor proteins that inhibit the G1 to
S cell cycle phase transition, hindering DNA replication and cell division. DNA viruses,
such as adenoviruses, human papillomaviruses, and human cytomegalovirus (HCMV),
produce proteins containing the LxCxE motif that can either degrade the RB protein or
inhibit its function, which will help the virus benefit from the host’s replication enzymes to
replicate its genome [63–65].

4.2.2. G3BP Protein Binding Motif

The Ras GTPase activating protein SH3 domain-binding proteins, known as G3BP,
are important for viral replication. The G3BP proteins form a complex and bind to RNA
when cells are under environmental stress or viral attack. Upon binding of G3BP to
RNA, stress granules are formed to help the cell eliminate the virus and control the viral
infection [66]. According to the ELM database, the G3BP binding motif has the pattern
[FYLIMV].FG[DES]F [27], often simplified to FGDF. Human herpesvirus [67], Sindbis
virus [68,69], Semliki Forest virus [70], and Chikungunya virus [70,71] include FGDF
motifs capable of interacting with G3BP and altering its function. The G3BP functional
alteration is essential for intracellular viral replication and overcoming the cellular antiviral
response [66,67,69,70].

Chikungunya virus, an arbovirus that needs a mosquito vector to be transmitted to
a vertebrate host, has two important FGDF motifs in the hypervariable region located
towards the C-terminus of nsp3 protein. It has been shown that one FGDF motif is enough
to infect the mosquito, but two FGDF motifs are necessary for the virus to be transmitted
from mosquito saliva to the vertebrate host [72]. In a relative of Chikungunya virus, Semliki
Forest virus, the C-terminal FGDF motif in nsp3 protein is also found to be essential for the
interaction with G3BP protein, and without this motif the interaction between G3BP and
the replication complex is inhibited [70].

The multiple sequence alignment example shows a variation in the number of FGDF
motifs among alphaviruses related to Chikungunya (Figure 4). Further, disorder and
secondary structure is not conserved in this hypervariable region suggesting that functional
divergence is likely for these FGDF motifs. For instance, in the Chikungunya virus the
first motif is found to be in a completely disordered region and the second motif is lacking
disorder in only one amino acid based on IUPRED predictions with a 0.4 cutoff. However,
in the Semliki Forest virus, the two motifs were found to be in ordered protein regions.

In SARS-CoV-2, several studies have reported the interaction of nucleocapsid with the
host G3BP proteins [73]. Upon interaction, attenuation of the host immune response occurs
due to alteration of the process of stress granules inside the infected cells [74–76]. Kruse et al.
proposed that the nucleocapsid-induced inhibition of stress granules is due to the presence
of the ΦxFG pattern motif in nucleocapsid, where Φ means any hydrophobic residue,
X means any amino acid and the last two amino acids in the motif are phenylalanine
and glycine [77]. The motif in SARS-CoV-2 does not follow the last part of the pattern in
the ELM database [DES]F, which suggests that the exact pattern is not essential for the
functionality of the motif.
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Figure 4. The G3BP binding motif has been verified in the nsp3 protein from Chikungunya virus and
Semliki Forest virus from Alphaviruses. Sequences were identified with BLAST using residues 1700–
2000 from nsp3 (accession: Q5XXP4) from Chikungunya virus as query. Sequence names shown in red
represents true positive instances from the ELM database [27]. The multiple sequence alignment was
built with MAFFT+L-INS-i [57] in Jalview [58]. The regular expression pattern [FYLIMV].FG[DES]F
from motif LIG_G3BP_FGDF_1 in the ELM database [27] was identified using Find in Jalview, shown
in black with white text. The region shown under Sequence shows the amino acids that corresponds
to the true positive motifs from Chikungunya virus and Semliki Forest virus, the connecting amino
acids, plus one additional site on each side. The MSA and heatmaps for Disorder, Surface, and
Structure are colored as in Figure 3.
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4.3. SLiMs and Immune Cell Modulation

Viruses utilize diverse approaches to evade host immunity [78]. One strategy is the use
of the pLxIS pattern by Rotaviruses [79]. In humans, the pLxIS motif is found in the stimu-
lator of interferon genes (STING), mitochondrial antiviral signaling protein (MAVS), TIR
domain-containing adaptor inducing IFN-β (TRIF), and in interferon regulatory factor 3
(IFN-3). Following the phosphorylation of the pLxIS motif in the adaptor proteins STING,
MAVS, and TRIF, they interact with IFN-3 and stimulate the pLxIS motif’s phosphorylation
in the transcription factor IFN-3. Next, detachment of the adaptor proteins occurs from
the IFN-3 protein, followed by IFN-3 homodimerization and activation. Subsequently, the
activated IFN-3 dimer transfers to the nucleus and activates the IFN-β gene’s transcription,
triggering the release of INF-β from the infected cell and activating the innate immune
response [79–81]. In Rotavirus, the pLxIS pattern is observed in the non-structural protein 1
(nsp1) and has the same affinity to IFN-3 as the adaptor proteins; however, when Rotavirus
nsp1 pLxIS motif (Figure 5) binds to the IFN-3 protein, ubiquitination and degradation
of IFN-3 are initiated. Hence, hindrance of IFN-β transcription occurs, and the virus can
effectively escape host defense mechanisms and deactivate one of the innate immune
responses [79,82].
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Figure 5. The pLxIS site in nsp1 from Simian rotavirus. Sequences were identified with BLAST using full-length nsp1
from Simian rotavirus (accession: AFY98633.1) as query. Sequence names shown in red represents true positive instances
from the ELM database [27]. The multiple sequence alignment was built with MAFFT+L-INS-i [57] in Jalview [58]. The
regular expression pattern [VILPF].{1,3}L.I(S) from motif LIG_IRF3_LxIS_1 in the ELM database was identified using Find
in Jalview, shown in black with white text. The region shown under Sequence shows the amino acids that corresponds to
the true positive motif from Simian rotavirus plus one additional site on each side. The MSA and heatmaps for Disorder,
Surface, and Structure are colored as in Figure 3.

4.4. SLiMs Modulating Host Cell Machinery

Although the previous steps are essential in the virus life cycle, viral proteins can
also participate in other protein-protein interactions inside the host cell. Viruses can cause
unfavorable cellular effects by mediating interactions with other cellular proteins. The
following section shows how viruses use different viral-host PPIs to affect the pathogenicity
and virulence of a diversity of viruses.

4.4.1. PDZ Binding Motif

PDZ domains are found in a vast number of proteins that recognize a specific C-
terminal amino acid pattern [83]. According to the ELM database, the PDZ binding
motif pattern is . . . [ST].[ACVILF]$ [27]. Proteins that include PDZ domains are involved
in numerous cellular processes such as cell signaling pathways, subcellular transport,
activating proteases, and recognizing misfolded proteins [83]. Hence, viruses that display
a PDZ binding motif (PBM) will have the ability to bind to several PDZ domain containing
proteins causing various effects depending on which PDZ domain they interact with [84].
Oncogenic human adenovirus 9 E4 protein and human papillomavirus 18 E6 protein
include a PDZ binding motif in their C-terminal regions. Both proteins bind to PDZ domain
containing proteins MUPP-1, Dlg, and MAGI-1 [85]. MUPP-1, a multi PDZ domain protein
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that comprises 13 PDZ domains, is an essential protein for maintaining cell polarity at the
tight junction [86]. Dlg, a Drosophila discs large protein and a protein with 3 PDZ domains,
is one of the scribble complex proteins, which are involved in maintaining the cellular
polarity and adhesion at the cellular junction [87]. MAGI-1 is a membrane associated
guanylate cyclase that is located in cellular junction and is important for regulating the
proliferation and cellular adhesion between cells [88]. Dlg and MAGI-1 function in tumor
suppression [85,87,88]. The binding of human adenovirus 9 to these human proteins
inhibits their function through sequestration. Adversely, the E6 protein of some human
papillomavirus (HPV) strains that includes the PBM in its C-terminal region will induce
these proteins breakdown [85]. Infections with human papillomavirus strains containing
PBM in the E6 protein pose a higher risk of causing HPV-associated metastatic cancer.
Through the PBM, the E6 protein can perform an interaction with the cellular polarity
proteins, leading to loss of cellular polarity and promotion of the proliferation and invasion
of cancerous cells [89,90]. The multiple sequence alignment shows that this SLiM is in a
highly varying region (Figure 6). The sequence diversity in this region makes it difficult to
make a good multiple sequence alignment. Further, intrinsic disorder prediction suggests
that this SLiM is not consistently in a disordered region, but the surface accessibility is
consistent. Interestingly, the first half of the motif in HPV18 is structured (helix) but
the remaining part of the motif is found in a coil state. Such variations may be due to
inaccurate predictions but could also be a symptom of functional divergence between the
PDZ binding motifs.
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Figure 6. The PDZ domain binding motif in the E6 protein from HPV16 and HPV18. Sequences were
identified with BLAST using protein E6 from HPV18 (accession: P06463.1) as query. Sequence names
shown in red represents true positive instances from the ELM database [27]. The multiple sequence
alignment (MSA) was built with MAFFT+L-INS-i [57] in Jalview [58]. The regular expression pattern
. . . [ST].[ACVILF]$ from motif LIG_PDZ_Class_1 in the ELM database [27] was identified using Find
in Jalview, shown in black with white text. The region shown under Sequence shows the amino acids
that corresponds to the true positive motif from HPV16 and HPV18 plus one additional site on each
side. The MSA and heatmaps for Disorder, Surface, and Structure are colored as in Figure 3.

In SARS-CoV, the envelope protein was found to include PBM, which has the ability
to interact with the PDZ domain in the syntenin protein. The interaction of SARS-CoV
envelope protein with syntenin was correlated with the P38 MAPK activation, inducing the
production of inflammatory cytokines. Mutant PBM motif was correlated with decreased
inflammatory response in SARS-CoV infected mice [91]. However, other studies showed
that the PBM found in both SARS-CoV and SARS-CoV-2 envelope proteins is capable of
interacting with PALS1 protein which is important for maintaining cellular polarity at the
cell junction [92–94]. The PBM motif in the envelope protein from SARS-CoV and SARS-
CoV-2 has the sequence DLLV [94], which resembles the LIG_PDZ_Class_2 pattern in the
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ELM database ( . . . [VLIFY].[ACVILF]$) [27], and was found to be in a structurally flexible
region that resembles the C-terminal unstructured region in Crumbs protein (Crb-CT). Crb
and PATJ protein (PALS1-associated tight junction) binds to PALS1 to form the Crumbs
Cell Polarity Complex Component, which is responsible for maintaining cell polarity at the
cellular junction [94]. Both the C-terminal BPM motif and the Crb-CT region of the envelope
protein were found to bind to PALS1 in a similar fashion [94]. However, the interaction
between the envelope protein and PALS1 is thought to cause alteration in the subcellular
location of PALS1. The re-localization of the PALS1 protein to where virus is assembled
impedes the cellular junction protein complex formation in the infected epithelial cells.
Thus, the infected cell will lose its polarity which can facilitate the viral release from the
cells [92–94].

4.4.2. The 14-3-3 Domain-Binding Motif

Another common viral-host interaction is mediated through Serine and Threonine
(ST) rich motifs in the 14-3-3 protein family. 14-3-3 proteins are involved in a myriad of
signaling pathways and interact with numerous cellular proteins [95–97]. The interaction
of the 14-3-3 protein depends on the phosphorylation state of the binding motif. Thus,
kinases and phosphatases can affect the motif’s binding to the 14-3-3 protein [98]. SLiM
mediated binding to 14-3-3 proteins can (1) induce structural changes, (2) block the active
site, (3) facilitate the interaction between the motif-containing protein and other proteins,
or (4) alter the cellular location of the binding partner [97,98].

In Hepatitis C virus (HCV), the HCV core protein interaction to 14-3-3 protein acti-
vates the kinase Raf-1, which induces cellular proliferation and abnormal growth [99]. The
HCV genotype 1b core protein has been reported to interact with Raf-1 kinase using the
sequence motif RKTpSER, and the phosphorylation of the serine residue was found to
be essential for the motif activity [99]. This sequence motif partially overlaps with the
R[ˆDE]{0,2}[ˆDEPG]([ST])(([FWYLMV].)|([ˆPRIKGN]P)|([ˆPRIKGN].{2,4}[VILMFWYP])) pat-
tern of the canonical 14-3-3 binding motif (LIG_14-3-3_CanoR_1) in the ELM database [27].

In SARS-CoV, binding of the 14-3-3 domain-containing proteins to the phosphory-
lated nucleocapsid is involved in translocation of the nucleocapsid protein between the
cytoplasm and nucleus, altering the functionality of the 14-3-3 interacting protein [100]. In
the closely related SARS-CoV-2, nucleocapsid has not yet been detected in the nucleus, but
it has been found to interact with various 14-3-3 protein isoforms in the cytoplasm [101].
Several sequence patterns identified in both SARS-CoV and SARS-CoV-2 are found in
a disordered S/T-rich protein region of the nucleocapsid protein with multiple known
phosphorylation sites [101] and resemble, either partially or completely, the canonical
14-3-3 pattern found in the ELM database [27]. The phosphorylation and disorder property
of the presented motifs suggest a similarity to other 14-3-3 binding motifs where phos-
phorylation and disorder are essential for interacting with the 14-3-3 domain-containing
proteins [102]. Although no viral 14-3-3 binding motif examples are included yet in the
ELM database, these examples highlight that viruses may have numerous molecular effects
on cells through interactions with 14-3-3, mediated by SLiMs.

4.5. SLiMs Responsible for Viral Exit from the Cell

Viruses have several strategies to egress their host cells, which can be achieved through
cell lysis, budding from the cell membrane, or exocytosis using the secretory pathway.
SLiMs can enhance viral egress through budding. One example is the interaction of the
viral proteins with the endosomal sorting complexes required for transport (ESCRT) path-
way inside the cell. The importance of viral late domains (L domains) has been widely
implicated in the viral budding process, and short sequence motifs, P[TS]AP, PPxY, and
LYPxL, have been involved in the interaction with the ESCRT pathway machinery [103–105].
Such motifs were found to be highly conserved across diverse types of viruses, includ-
ing Poxviruses [106], Hepatitis C viruses [107], Rhabdoviruses [108], Retroviruses [109],
Arenaviruses [110], and Filoviruses [111,112]. Ebola VP40 (Figure 7) and HIV-1 contain
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PPxY motifs that are recognized by a highly conserved enzyme in humans (E3 ubiquitin
ligase) [113,114]. E3 ubiquitin ligase enzyme is involved in regulating a plethora of biologi-
cal processes by stimulating the ubiquitination and subsequent degradation of their target
protein [115]. Interactions with the WW domain of ubiquitin ligase enzymes, recruitment of
Tsg101, and the ubiquitination by specific ubiquitin ligase enzymes have been shown to fa-
cilitate the ESCRT pathway-mediated viral budding [113,114]. The role of ESCRT pathway
and viral late domains in viral exit have been extensively reviewed [103,116], including the
importance of the ESCRT pathway in different phases of the viral life cycle [117].
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Figure 7. The PPxY motif in the matrix protein VP40 from Ebola virus. Sequences were identified
with BLAST using full-length VP40 from Ebola virus (accession: Q05128) as query against the
refseq_protein and nr databases. Sequence names shown in red represents true positive instances
from the ELM database [27]. The multiple sequence alignment was built with MAFFT+L-INS-i [57]
in Jalview [58]. The regular expression pattern PP.Y from motif LIG_WW_1 in the ELM database [27]
was identified using Find in Jalview, shown in black with white text. The region shown under
Sequence corresponds to the true positive motif from Zaire Ebola virus and Marburg marburg virus
plus one additional site on each side. It should be noted that query protein Q05128 Uniprot ID is
identical to protein NP_066245.1 used in the multiple sequence alignment.

5. Conclusions and Future Perspective

The small genome size of viruses and their inability to replicate outside a host go
hand in hand with their need to hijack host cell machinery [2]. SLiMs with varying
evolutionary rates in different viral families can mutate to accommodate various selective
pressures stemming from their environment. The fitness of viruses depends on their
capacity to alter host cell machinery and escape detection by the immune system. This
capacity is governed, in part, by the potential to mimic and compete with functionally
important protein interactions. In this review, we highlighted the importance of viral
mimicry mediated by SLiMs at select steps of the virus life cycle. We also showed how
specific SLiMs might affect virulence and pathogenicity. These SLiM actions are mediated
by viral-host protein-protein interactions.

Previous studies on eukaryotic SLiMs showed that physicochemical properties, such
as secondary structure and disorder, should be considered when studying SLiMs as the
majority of the functionally verified SLiMs were found to be disordered and enriched with
polar residues [34]. Based on disorder predictions, the true positive experimentally verified
viral SLiMs deposited in the ELM database are not necessarily intrinsically disordered, but
they are surface exposed and mainly in a conformationally flexible coil rather than in alpha
helices or beta strands. Our findings for the viral SLiMs give rise to questions regarding
disorder content and other structural characteristics of the corresponding eukaryotic linear
motifs in the hosts of viruses, and for eukaryotic linear motifs, in general. The ELM
database has grown rapidly over the last 10 years and re-analysis of disorder content is
warranted. Among the viral SLiMs, the most abundant categories are the ligand binding
sites and post-translationally modified sites. Ligand binding sites are the most common
class among the fully disordered sites, while the post-translational modification sites are the
most common among the fully ordered sites. Given that disorder content appears to vary
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between different functional classes of motifs, an analysis into disorder content variation
across these classes may illuminate function-specific traits of importance in differentiating
false and true positive SLiMs.

Proteomes from eukaryotes tend to have more disorder content overall than pro-
teomes from bacteria and viruses [118,119]. It is possible that the disorder content required
for SLiMs to be functional not only depends on the identity of the SLiM, but also on
other contexts such as genome complexity and overall disorder content of the proteome.
Eukaryotic genomes evolve under multifaceted constraint that differ from the constraint
acting on viruses [120]. For eukaryotes, disordered regions are often able to participate in
multiple distinct PPIs [121]. Disorder is advantageous at binding interfaces that rely on
conformational transitions where SLiMs controlled by post-translational modifications may
act as molecular on/off switches [122]. However, disorder may become less advantageous
when an ordered viral SLiM mimics a functional conformation of a host SLiM so that it is
always switched on or off.

We showed an example of the G3BP binding motif in Chikungunya virus and Semliki
Forest virus. Based on IUPRED, the former is found in a disordered region, while the
latter is in an ordered region (Figure 4). Since intrinsic disorder is not conserved, changes
in disorder can potentially change the functional potential of a SLiM; however, intrinsic
disorder may not be as important for viral SLiMs as often stated. The majority of the
experimentally confirmed viral SLiMs were almost entirely found in a surface accessible
coil region, unlike disorder where at least 1 in 4 motifs was devoid of disorder. HIV-1
envelope furin cleavage site motif and E6 HPV 18 PBM were predicted to be a mix of
both coil and helix, which poses a question about the differences between flexible and
disordered protein regions, and whether flexibility and disorder should both be considered
when searching for functional SLiMs.

Experimental verification of viral SLiMs can be challenging. The large SARS-CoV-2
dataset that has accumulated since this virus emerged in late 2019 has a wealth of informa-
tion. Currently, some SLiMs for SARS-CoV-2 have been verified [123,124]. We expect that
more are to come and that they will contribute to how we analyze viral SLiMs. For example,
the subcellular location of most SARS-CoV-2 proteins have been determined (Figure 8). The
Cell Atlas [125] and the Human Protein Atlas [126] provide subcellular locations and more
for human proteins. Combining information about shared cellular locations will further
illuminate potential viral network interference in the host cell. Computational methods
provide time- and cost-effective, low-risk ways to predict the presence and function of
these crucial motifs, which may be experimentally verified in vitro.

While the limitations of both computational and experimental approaches of linear
motifs must be closely considered to decrease the probability of misleading false positive
results, predictions of SLiMs have proven helpful in elucidating how SARS-CoV-2 interacts
with its human host (e.g., [44,61,128,132]). Altogether, this review shows the promise for
how molecular mimicry discovery in different viral families can improve our understanding
of the virus-host interface.
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127. Mészáros, B.; Sámano-Sánchez, H.; Alvarado-Valverde, J.; Čalyševa, J.; Martínez-Pérez, E.; Alves, R.; Shields, D.C.; Kumar, M.;
Rippmann, F.; Chemes, L.B.; et al. Short linear motif candidates in the cell entry system used by SARS-CoV-2 and their potential
therapeutic implications. Sci. Signal. 2021, 14, 334. [CrossRef] [PubMed]

128. Kliche, J.; Kuss, H.; Ali, M.; Ivarsson, Y. Cytoplasmic short linear motifs in ACE2 and integrin β3 link SARS-CoV-2 host cell
receptors to mediators of endocytosis and autophagy. Sci. Signal. 2021, 14, 1117. [CrossRef] [PubMed]

129. Thul, P.J.; Åkesson, L.; Wiking, M.; Mahdessian, D.; Geladaki, A.; Blal, H.A.; Alm, T.; Asplund, A.; Björk, L.; Breckels, L.M.; et al.
A subcellular map of the human proteome. Science 2017, 356, aal3321. [CrossRef] [PubMed]

130. Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.;
Asplund, A.; et al. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [CrossRef] [PubMed]

131. Duart, G.; García-Murria, M.J.; Grau, B.; Acosta-Cáceres, J.M.; Martínez-Gil, L.; Mingarro, I. SARS-CoV-2 envelope protein
topology in eukaryotic membranes: SARS-CoV-2 E protein topology. Open Biol. 2020, 10, 200209. [CrossRef]

132. Peacock, T.P.; Goldhill, D.H.; Zhou, J.; Baillon, L.; Frise, R.; Swann, O.C.; Kugathasan, R.; Penn, R.; Brown, J.C.; Sanchez-David,
R.Y.; et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat. Microbiol. 2021, 6,
899–909. [CrossRef] [PubMed]

http://doi.org/10.1073/pnas.250277297
http://www.ncbi.nlm.nih.gov/pubmed/11095724
http://doi.org/10.1038/nm1201-1313
http://www.ncbi.nlm.nih.gov/pubmed/11726971
http://doi.org/10.1038/s41598-019-50701-3
http://doi.org/10.1073/pnas.131059198
http://doi.org/10.3390/v13061138
http://www.ncbi.nlm.nih.gov/pubmed/34199191
http://doi.org/10.3390/cells10030483
http://doi.org/10.1007/s00018-014-1661-9
http://doi.org/10.3390/biom10101413
http://www.ncbi.nlm.nih.gov/pubmed/33036302
http://doi.org/10.1038/nrg2810
http://doi.org/10.1016/j.tibs.2005.07.008
http://doi.org/10.1038/nrm3920
http://doi.org/10.1038/s41392-020-00372-8
http://doi.org/10.1126/science.abe9403
http://doi.org/10.1074/jbc.RA120.016175
http://doi.org/10.1186/s13578-021-00568-7
http://doi.org/10.1126/scisignal.abd0334
http://www.ncbi.nlm.nih.gov/pubmed/33436497
http://doi.org/10.1126/scisignal.abf1117
http://www.ncbi.nlm.nih.gov/pubmed/33436498
http://doi.org/10.1126/science.aal3321
http://www.ncbi.nlm.nih.gov/pubmed/28495876
http://doi.org/10.1126/science.1260419
http://www.ncbi.nlm.nih.gov/pubmed/25613900
http://doi.org/10.1098/rsob.200209
http://doi.org/10.1038/s41564-021-00908-w
http://www.ncbi.nlm.nih.gov/pubmed/33907312

	Dynamic, but not necessarily disordered, human-virus interactions mediated through slims in viral proteins
	Recommended Citation

	Introduction 
	Short Linear Motifs 
	SLiMs in Intrinsically Disordered Protein Regions 

	Methods Used in the Discovery of SLiMs 
	Experimental Procedures 
	Computational Approaches 

	Are Viral SLiMs Disordered? 
	Select Viral SLiMs Involved in the Viral Life Cycle 
	SLiMs and Viral Cell Invasion through Cellular Attachment, Entry, and Fusion 
	RGD Motif, Integrin-Binding, and Attachment 
	Furin Cleavage Motif Role in Viral Entry 

	SLiMs Influencing Viral Cell Replication 
	Retinoblastoma-Binding LxCxE Motif 
	G3BP Protein Binding Motif 

	SLiMs and Immune Cell Modulation 
	SLiMs Modulating Host Cell Machinery 
	PDZ Binding Motif 
	The 14-3-3 Domain-Binding Motif 

	SLiMs Responsible for Viral Exit from the Cell 

	Conclusions and Future Perspective 
	References

