12 research outputs found

    SULT1A1 genotype, active and passive smoking, and breast cancer risk by age 50 years in a German case–control study

    Get PDF
    INTRODUCTION: Sulfotransferase 1A1 (encoded by SULT1A1) is involved in the metabolism of procarcinogens such as heterocyclic amines and polycyclic aromatic hydrocarbons, both of which are present in tobacco smoke. We recently reported a differential effect of N-acetyltransferase (NAT) 2 genotype on the association between active and passive smoking and breast cancer. Additional investigation of a common SULT1A1 genetic polymorphism associated with reduced enzyme activity and stability might therefore provide deeper insight into the modification of breast cancer susceptibility. METHODS: We conducted a population-based case–control study in Germany. A total of 419 patients who had developed breast cancer by age 50 years and 884 age-matched control individuals, for whom risk factor information and detailed smoking history were available, were included in the analysis. Genotyping was performed using a fluorescence-based melting curve analysis method. Multivariate logistic regression analysis was used to estimate breast cancer risk associated with the SULT1A1 Arg(213)His polymorphism alone and in combination with NAT2 genotype in relation to smoking. RESULTS: The overall risk for breast cancer in women who were carriers of at least one SULT1A1*2 allele was not significantly different from that for women with the SULT1A1*1/*1 genotype (adjusted odds ratio 0.83, 95% confidence interval 0.66–1.06). Risk for breast cancer with respect to several smoking variables did not differ substantially between carriers of the *2 allele and noncarriers. However, among NAT2 fast acetylators, the odds ratio associated with passive smoking only (3.23, 95% confidence interval 1.05–9.92) was elevated in homozygous carriers of the SULT1A1*1 allele but not in carriers of the SULT1A1*2 allele (odds ratio 1.28, 95% confidence interval 0.50–3.31). CONCLUSION: We found no evidence that the SULT1A1 genotype in itself modifies breast cancer risk associated with smoking in women up to age 50 years. In combination with NAT2 fast acetylator status, however, the SULT1A1*1/*1 genotype might increase breast cancer risk in women exposed to tobacco smoke

    Structural Modification of the Natural Product Valerenic Acid Tunes RXR Homodimer Agonism

    Get PDF
    Retinoid X receptors (RXR) are ligand-sensing transcription factors with a unique role in nuclear receptor signaling as universal heterodimer partners. RXR modulation holds potential in cancer, neurodegeneration and metabolic diseases but adverse effects of RXR activation and lack of selective modulators prevent further exploration as therapeutic target. The natural product valerenic acid has been discovered as RXR agonist with unprecedented preference for RXR subtype and homodimer activation. To capture structural determinants of this activity profile and identify potential for optimization, we have studied effects of structural modification of the natural product on RXR modulation and identified an analogue with enhanced RXR homodimer agonism

    Nurr1 Modulation Mediates Neuroprotective Effects of Statins

    Get PDF
    The ligand-sensing transcription factor Nurr1 emerges as a promising therapeutic target for neurodegenerative pathologies but Nurr1 ligands for functional studies and therapeutic validation are lacking. Here pronounced Nurr1 modulation by statins for which clinically relevant neuroprotective effects are demonstrated, is reported. Several statins directly affect Nurr1 activity in cellular and cell-free settings with low micromolar to sub-micromolar potencies. Simvastatin as example exhibits anti-inflammatory effects in astrocytes, which are abrogated by Nurr1 knockdown. Differential gene expression analysis in native and Nurr1-silenced cells reveals strong proinflammatory effects of Nurr1 knockdown while simvastatin treatment induces several neuroprotective mechanisms via Nurr1 involving changes in inflammatory, metabolic and cell cycle gene expression. Further in vitro evaluation confirms reduced inflammatory response, improved glucose metabolism, and cell cycle inhibition of simvastatin-treated neuronal cells. These findings suggest Nurr1 involvement in the well-documented but mechanistically elusive neuroprotection by statins

    Genetic predictors of acute toxicities related to radiation therapy following lumpectomy for breast cancer: a case-series study

    Get PDF
    INTRODUCTION: The cytotoxic effects of radiation therapy are mediated primarily through increased formation of hydroxyl radicals and reactive oxygen species, which can damage cells, proteins and DNA; the glutathione S-transferases (GSTs) function to protect against oxidative stress. We hypothesized that polymorphisms encoding reduced or absent activity in the GSTs might result in greater risk for radiation-associated toxicity. METHODS: Women receiving therapy in radiation units in Germany following lumpectomy for breast cancer (1998–2001) provided a blood sample and completed an epidemiological questionnaire (n = 446). Genotypes were determined using Sequonom MALDI-TOF (GSTA1, GSTP1) and Masscode (GSTM1, GSTT1). Biologically effective radiotherapy dose (BED) was calculated, accounting for differences in fractionation and overall treatment time. Side effects considered were grade 2c and above, as classified using the modified Common Toxicity Criteria. Predictors of toxicity were modelled using Cox regression models in relation to BED, with adjustment for treating clinic, photon field, beam energy and boost method, and potential confounding variables. RESULTS: Low activity GSTP1 genotypes were associated with a greater than twofold increase in risk for acute skin toxicities (adjusted hazard ratio 2.28, 95% confidence interval 1.04–4.99). No associations were noted for the other GST genotypes. CONCLUSION: These data indicate that GSTP1 plays an important role in protecting normal cells from damage associated with radiation therapy. Studies examining the effects of GSTP1 polymorphisms on toxicity, recurrence and survival will further inform individualized therapeutics based on genotypes

    Association of a common AKAP9 variant with breast cancer risk: a collaborative analysis.

    No full text
    Data from several studies have suggested that polymorphisms in A-kinase anchoring proteins (AKAPs), which are key components of signal transduction, contribute to carcinogenesis. To evaluate the impact of AKAP variants on breast cancer risk, we genotyped six nonsynonymous single-nucleotide polymorphisms that were predicted to be deleterious and found two (M463I, 1389G>T and N2792S, 8375A>G) to be associated with an allele dose-dependent increase in risk of familial breast cancer in a German population. We extended the analysis of AKAP9 M463I, which is in strong linkage disequilibrium with AKAP9 N2792S, to 9523 breast cancer patients and 13770 healthy control subjects from seven independent European and Australian breast cancer studies. All statistical tests were two-sided. The collaborative analysis confirmed the association of M463I with increased breast cancer risk. Among all breast cancer patients, the combined adjusted odds ratio (OR) of breast cancer for individuals homozygous for the rare allele TT (frequency = 0.19) compared with GG homozygotes was 1.17 (95% confidence interval [CI] = 1.08 to 1.27, P = .0003), and the OR for TT homozygotes plus GT heterozygotes compared with GG homozygotes was 1.10 (95% CI = 1.04 to 1.17, P = .001). Among the combined subset of 2795 familial breast cancer patients, the respective ORs were 1.27 (95% CI = 1.12 to 1.45, P = .0003) and 1.16 (95% CI = 1.06 to 1.27, P = .001)

    A common coding variant in CASP8 is associated with breast cancer risk

    No full text
    The Breast Cancer Association Consortium (BCAC) has been established to conduct combined case-control analyses with augmented statistical power to try to confirm putative genetic associations with breast cancer. We genotyped nine SNPs for which there was some prior evidence of an association with breast cancer: CASP8 D302H (rs1045485), IGFBP3 -202 C --> A (rs2854744), SOD2 V16A (rs1799725), TGFB1 L10P (rs1982073), ATM S49C (rs1800054), ADH1B 3' UTR A --> G (rs1042026), CDKN1A S31R (rs1801270), ICAM5 V301I (rs1056538) and NUMA1 A794G (rs3750913). We included data from 9-15 studies, comprising 11,391-18,290 cases and 14,753-22,670 controls. We found evidence of an association with breast cancer for CASP8 D302H (with odds ratios (OR) of 0.89 (95% confidence interval (c.i.): 0.85-0.94) and 0.74 (95% c.i.: 0.62-0.87) for heterozygotes and rare homozygotes, respectively, compared with common homozygotes; P(trend) = 1.1 x 10(-7)) and weaker evidence for TGFB1 L10P (OR = 1.07 (95% c.i.: 1.02-1.13) and 1.16 (95% c.i.: 1.08-1.25), respectively; P(trend) = 2.8 x 10(-5)). These results demonstrate that common breast cancer susceptibility alleles with small effects on risk can be identified, given sufficiently powerful studies

    Heterogeneity of Breast Cancer Associations with Five Susceptibility Loci by Clinical and Pathological Characteristics

    Get PDF
    A three-stage genome-wide association study recently identified single nucleotide polymorphisms (SNPs) in five loci (fibroblast growth receptor 2 (FGFR2), trinucleotide repeat containing 9 (TNRC9), mitogen-activated protein kinase 3 K1 (MAP3K1), 8q24, and lymphocyte-specific protein 1 (LSP1)) associated with breast cancer risk. We investigated whether the associations between these SNPs and breast cancer risk varied by clinically important tumor characteristics in up to 23,039 invasive breast cancer cases and 26,273 controls from 20 studies. We also evaluated their influence on overall survival in 13,527 cases from 13 studies. All participants were of European or Asian origin. rs2981582 in FGFR2 was more strongly related to ER-positive (per-allele OR (95%CI) = 1.31 (1.27–1.36)) than ER-negative (1.08 (1.03–1.14)) disease (P for heterogeneity = 10−13). This SNP was also more strongly related to PR-positive, low grade and node positive tumors (P = 10−5, 10−8, 0.013, respectively). The association for rs13281615 in 8q24 was stronger for ER-positive, PR-positive, and low grade tumors (P = 0.001, 0.011 and 10−4, respectively). The differences in the associations between SNPs in FGFR2 and 8q24 and risk by ER and grade remained significant after permutation adjustment for multiple comparisons and after adjustment for other tumor characteristics. Three SNPs (rs2981582, rs3803662, and rs889312) showed weak but significant associations with ER-negative disease, the strongest association being for rs3803662 in TNRC9 (1.14 (1.09–1.21)). rs13281615 in 8q24 was associated with an improvement in survival after diagnosis (per-allele HR = 0.90 (0.83–0.97). The association was attenuated and non-significant after adjusting for known prognostic factors. Our findings show that common genetic variants influence the pathological subtype of breast cancer and provide further support for the hypothesis that ER-positive and ER-negative disease are biologically distinct. Understanding the etiologic heterogeneity of breast cancer may ultimately result in improvements in prevention, early detection, and treatment
    corecore