15 research outputs found

    Skipping breakfast and physical fitness among school-aged adolescents

    Get PDF
    OBJECTIVES: This study explored the relationship between skipping breakfast and physical fitness in a group of school-aged adolescents in China. METHODS: This cross-sectional study from the Chinese National Surveillance on Students’ Constitution and Health (CNSSCH) survey in Ningbo, China, used a standardized questionnaire to assess the frequency of breakfast consumption. Physical fitness was measured through standing long jump, 50-m sprint, 1,000 (or 800)- m run, and vital capacity tests. Multiple linear regression analysis was used to investigate the relationship between the frequency of breakfast consumption and physical fitness. RESULTS: Our study included a total of 1,849 school-aged adolescents (aged 15.53±1.80 years). Among boys, non-breakfast-skippers had good scores for 50-m sprints, 1,000-m run, and vital capacity tests when compared with breakfast skippers (all po0.05). Among girls, non-breakfast-skippers had a good scores for the standing long jump test compared with breakfast skippers (p=0.003). The multiple linear regression model showed that not skipping breakfast was positively associated with vital capacity (b=-173.78, p=0.004) and inversely associated with 50-m sprint (b=-0.12, p=0.018) and 1,000-m run times (b=-8.08, p=0.001) in boys. CONCLUSION: The results of this cross-sectional study revealed that skipping breakfast might be associated with lower physical fitness in Chinese adolescents aged 13–18 years, especially boys. Breakfast consumption should be promoted among Chinese school-aged boys

    MAP kinase phosphatase MKP-1 regulates p-ERK1/2 signaling pathway with fluoride treatment

    No full text
    Under embargo until: 2022-01-22Dental fluorosis is characterized by hypomineralization of tooth enamel caused by ingestion of excessive fluoride during enamel formation. Excess fluoride could have effects on the ERK signaling, which is essential for the ameloblasts differentiation and tooth development. MAP kinase phosphatase-1 (MKP-1) plays a critical role in regulating ERK related kinases. However, the role of MKP-1 in ameloblast and the mechanisms of MKP-1/ERK signaling in the pathogenesis of dental fluorosis are incompletely understood. Here, we adopted an in vitro fluorosis cell model using murine ameloblasts-like LS8 cells by employing sodium fluoride (NaF) as inducer. Using this system, we demonstrated that fluoride exposure led to an inhibition of p-MEK and p-ERK1/2 with a subsequent increase in MKP-1 expression in a dose-dependent manner. We further identified, under high dose fluoride, MKP-1 acted as a negative regulator of the fluoride-induced p-ERK1/2 signaling, leading to downregulation of CREB, c-myc, and Elk-1. Our results identify a novel MKP-1/ERK signaling mechanism that regulates dental fluorosis and provide a framework for studying the molecular mechanisms of intervention and fluorosis remodeling under normal and pathological conditions. MKP-1 inhibitors may prove to be a benefit therapeutic strategy for dental fluorosis treatment.acceptedVersio

    Inhibition of autophagy reduces the rate of fluoride-induced LS8 apoptosis via regulating ATG5 and ATG7

    No full text
    Excessive fluoride affects ameloblast differentiation and tooth development. The fate of fluorinated ameloblasts is determined by multiple signaling pathways in response to a range of stimuli. Both autophagy and apoptosis are involved in the regulation of dental fluorosis as well as in protein synthesis and enamel mineralization. Emerging evidence suggests that autophagy and apoptosis are interconnected and that their interaction greatly influences cell death. However, the effect of autophagy on apoptosis in fluoride-treated ameloblasts is unclear. Here, we employed an in vitro cellular model of fluorosis in mouse ameloblast-like LS8 cells and induced autophagy using sodium fluoride (NaF). Our findings suggest that NaF treatment induces autophagy in LS8 cells, and ATG5 and ATG7 are important molecules involved in this process. We also showed that NaF treatment reduced cell viability in Atg5/7 siRNA and autophagy inhibitor-treated LS8 cells. More importantly, NaF-induced apoptosis can be reversed by inhibiting early stage of autophagy. In conclusion, our study shows that autophagy is closely related to dental fluorosis, and inhibition of autophagy, especially ATG5/7, reduces fluoride-induced cell death and apoptosis.publishedVersio

    Ferroptosis exacerbates hyperlipidemic acute pancreatitis by enhancing lipid peroxidation and modulating the immune microenvironment

    No full text
    Abstract Abnormal activation of ferroptosis worsens the severity of acute pancreatitis and intensifies the inflammatory response and organ damage, but the detailed underlying mechanisms are unknown. Compared with other types of pancreatitis, hyperlipidemic acute pancreatitis (HLAP) is more likely to progress to necrotizing pancreatitis, possibly due to peripancreatic lipolysis and the production of unsaturated fatty acids. Moreover, high levels of unsaturated fatty acids undergo lipid peroxidation and trigger ferroptosis to further exacerbate inflammation and worsen HLAP. This paper focuses on the malignant development of hyperlipidemic pancreatitis with severe disease combined with the core features of ferroptosis to explore and describe the mechanism of this phenomenon and shows that the activation of lipid peroxidation and the aberrant intracellular release of many inflammatory mediators during ferroptosis are the key processes that regulate the degree of disease development in patients with HLAP. Inhibiting the activation of ferroptosis effectively reduces the intensity of the inflammatory response, thus reducing organ damage in patients and preventing the risk of HLAP exacerbation. Additionally, this paper summarizes the key targets and potential therapeutic agents of ferroptosis associated with HLAP deterioration to provide new ideas for future clinical applications

    Phosphorus Availability Affects the Photosynthesis and Antioxidant System of Contrasting Low-P-Tolerant Cotton Genotypes

    No full text
    Phosphorus (P) is an essential macronutrient, and an important component of plant metabolism. However, little is known about the effects of low P availability on P absorption, the photosynthetic electron transport chain, and the antioxidant system in cotton. This study used cotton genotypes (sensitive FJA and DLNTDH and tolerant BX014 and LuYuan343) with contrasting low-P tolerance in a hydroponic experiment under 15 µM, 50 µM, and 500 μM P concentrations. The results showed that low P availability reduced plant development and leaf area, shoot length, and dry weight in FJA and DLNADH, compared to BX014 and LuYuan343. The low P availability decreased the gas-exchange parameters such as the net photosynthetic rate, transpiration rate, and stomatal conductance, and increased the intercellular CO2 concentration. Chlorophyll a fluorescence demonstrated that the leaves’ absorption and trapped-energy flux were largely steady. In contrast, considerable gains in absorption and trapped-energy flux per reaction center resulted from decreases in the electron transport per reaction center under low-P conditions. In addition, low P availability reduced the activities of antioxidant enzymes and increased the content of malondialdehyde in the cotton genotypes, especially in FJA and DLNTDH. Moreover, low P availability reduced the activity of PEPC and generated a decline in the content of ATP and NADPH. Our research can provide a theoretical physiological basis for the growth and tolerance of cotton under low-P conditions

    Systematic characterization of Gossypium GLN family genes reveals a potential function of GhGLN1.1a regulates nitrogen use efficiency in cotton

    No full text
    Abstract The enzyme glutamine synthetase (GLN) is mainly responsible for the assimilation and reassimilation of nitrogen (N) in higher plants. Although the GLN gene has been identified in various plants, there is little information about the GLN family in cotton (Gossypium spp.). To elucidate the roles of GLN genes in cotton, we systematically investigated and characterized the GLN gene family across four cotton species (G. raimondii, G. arboreum, G. hirsutum, and G. barbadense). Our analysis encompassed analysis of members, gene structure, cis-element, intragenomic duplication, and exploration of collinear relationships. Gene duplication analysis indicated that segmental duplication was the primary driving force for the expansion of the GhGLN gene family. Transcriptomic and quantitative real-time reverse-transcription PCR (qRT-PCR) analyses indicated that the GhGLN1.1a gene is responsive to N induction treatment and several abiotic stresses. The results of virus-induced gene silencing revealed that the accumulation and N use efficiency (NUE) of cotton were affected by the inactivation of GhGLN1.1a. This study comprehensively analyzed the GhGLN genes in Gossypium spp., and provides a new perspective on the functional roles of GhGLN1.1a in regulating NUE in cotton

    DataSheet_2_Genetic variation in morphological traits in cotton and their roles in increasing phosphorus-use-efficiency in response to low phosphorus availability.xlsx

    No full text
    Phosphorus (P) is an essential macronutrient required for fundamental processes in plants. Trait plasticity is crucial for plant adaptation to environmental change. Variations in traits underlie diverse phosphorus (P) acquisition strategies among plants. Nevertheless, how the intraspecific plasticity and integration of morphological traits contribute to Phosphorus-Use-Efficiency (PUE) in cotton is unknown. In this study, 25 morphological traits were evaluated in 384 cotton genotypes grown with low P (LP, 10μmol. L−1) and normal nutrition (CK, 500μmol. L−1) to assess the genetic variability of morphological traits and their relationship to phosphorus use efficiency. Results revealed a large genetic variation in mostly morphological traits under low P. Significant enhancement in root traits and phosphorus efficiency-related traits like PUE was observed at LP as compared to CK conditions. In response to low P availability, cotton genotypes showed large plasticity in shoot and total dry biomass, phosphorus, and nitrogen efficiency-related traits (i.e., phosphorus/nitrogen use efficiency, phosphorus/nitrogen uptake efficiency), and most root traits, but a limited response in root dry biomass, taproot length, root surface area, root volume, and SPAD value. In addition, significant correlations were observed between PUtE (phosphorus uptake efficiency), NUE (nitrogen use efficiency), TDB (total dry biomass), and RTD (root tissue density) with PUE under both P supply level and phosphorus stress index, which may be a key indicator for improving PUE under LP conditions. Most root traits are most affected by genotypes than nutrition level. Conserved PUE is more affected by the nutrition level than the genotype effect. Principal component analysis depicted the comprehensive indicators under two P supply conditions were mainly reflected in root-related traits and morphological indicators such as dry matter biomass. These results indicate that interspecific variations exist within these cotton genotypes and traits. Our study provides suggestions for future research to enhance the ability of the earth system model to predict how crops respond to environmental interference and provide target quality for cotton breeding in phosphorus-deficient areas.</p

    DataSheet_1_Genetic variation in morphological traits in cotton and their roles in increasing phosphorus-use-efficiency in response to low phosphorus availability.docx

    No full text
    Phosphorus (P) is an essential macronutrient required for fundamental processes in plants. Trait plasticity is crucial for plant adaptation to environmental change. Variations in traits underlie diverse phosphorus (P) acquisition strategies among plants. Nevertheless, how the intraspecific plasticity and integration of morphological traits contribute to Phosphorus-Use-Efficiency (PUE) in cotton is unknown. In this study, 25 morphological traits were evaluated in 384 cotton genotypes grown with low P (LP, 10μmol. L−1) and normal nutrition (CK, 500μmol. L−1) to assess the genetic variability of morphological traits and their relationship to phosphorus use efficiency. Results revealed a large genetic variation in mostly morphological traits under low P. Significant enhancement in root traits and phosphorus efficiency-related traits like PUE was observed at LP as compared to CK conditions. In response to low P availability, cotton genotypes showed large plasticity in shoot and total dry biomass, phosphorus, and nitrogen efficiency-related traits (i.e., phosphorus/nitrogen use efficiency, phosphorus/nitrogen uptake efficiency), and most root traits, but a limited response in root dry biomass, taproot length, root surface area, root volume, and SPAD value. In addition, significant correlations were observed between PUtE (phosphorus uptake efficiency), NUE (nitrogen use efficiency), TDB (total dry biomass), and RTD (root tissue density) with PUE under both P supply level and phosphorus stress index, which may be a key indicator for improving PUE under LP conditions. Most root traits are most affected by genotypes than nutrition level. Conserved PUE is more affected by the nutrition level than the genotype effect. Principal component analysis depicted the comprehensive indicators under two P supply conditions were mainly reflected in root-related traits and morphological indicators such as dry matter biomass. These results indicate that interspecific variations exist within these cotton genotypes and traits. Our study provides suggestions for future research to enhance the ability of the earth system model to predict how crops respond to environmental interference and provide target quality for cotton breeding in phosphorus-deficient areas.</p
    corecore