175 research outputs found

    Портал «Единое окно» как платформа для репозитория учебно-методических материалов, размещаемых со свободными лицензиями

    Full text link
    The paper provides information on a pilot project aimed at setting up a Russian-language repository of Open Educational Resources (OER) developed for higher education institutions. The resources will be available under open licenses (Creative Commons family or other free licenses). This is a joint project of the State Institute of Information Technology and Telecommunications INFORMIKA and the UNESCO Institute for Information Technologies in Education (IITE).В докладе рассматривается проект создания хранилища учебно-методических материалов, создаваемых в вузах и размещаемых в открытом доступе со свободными лицензиями. Данный проект реализуется как совместная инициатива Государственного научно-исследовательского института информационных технологий и телекоммуникаций "Информика" и Института ЮНЕСКО по информационным технологиям в образовании

    Beta-gamma systems and the deformations of the BRST operator

    Full text link
    We describe the relation between simple logarithmic CFTs associated with closed and open strings, and their "infinite metric" limits, corresponding to the beta-gamma systems. This relation is studied on the level of the BRST complex: we show that the consideration of metric as a perturbation leads to a certain deformation of the algebraic operations of the Lian-Zuckerman type on the vertex algebra, associated with the beta-gamma systems. The Maurer-Cartan equations corresponding to this deformed structure in the quasiclassical approximation lead to the nonlinear field equations. As an explicit example, we demonstrate, that using this construction, Yang-Mills equations can be derived. This gives rise to a nontrivial relation between the Courant-Dorfman algebroid and homotopy algebras emerging from the gauge theory. We also discuss possible algebraic approach to the study of beta-functions in sigma-models.Comment: LaTeX2e, 15 pages; minor revision, typos corrected, Journal of Physics A, in pres

    Polycation-π Interactions Are a Driving Force for Molecular Recognition by an Intrinsically Disordered Oncoprotein Family

    Get PDF
    Molecular recognition by intrinsically disordered proteins (IDPs) commonly involves specific localized contacts and target-induced disorder to order transitions. However, some IDPs remain disordered in the bound state, a phenomenon coined "fuzziness", often characterized by IDP polyvalency, sequence-insensitivity and a dynamic ensemble of disordered bound-state conformations. Besides the above general features, specific biophysical models for fuzzy interactions are mostly lacking. The transcriptional activation domain of the Ewing's Sarcoma oncoprotein family (EAD) is an IDP that exhibits many features of fuzziness, with multiple EAD aromatic side chains driving molecular recognition. Considering the prevalent role of cation-π interactions at various protein-protein interfaces, we hypothesized that EAD-target binding involves polycation- π contacts between a disordered EAD and basic residues on the target. Herein we evaluated the polycation-π hypothesis via functional and theoretical interrogation of EAD variants. The experimental effects of a range of EAD sequence variations, including aromatic number, aromatic density and charge perturbations, all support the cation-π model. Moreover, the activity trends observed are well captured by a coarse-grained EAD chain model and a corresponding analytical model based on interaction between EAD aromatics and surface cations of a generic globular target. EAD-target binding, in the context of pathological Ewing's Sarcoma oncoproteins, is thus seen to be driven by a balance between EAD conformational entropy and favorable EAD-target cation-π contacts. Such a highly versatile mode of molecular recognition offers a general conceptual framework for promiscuous target recognition by polyvalent IDPs. © 2013 Song et al

    ComSin: database of protein structures in bound (complex) and unbound (single) states in relation to their intrinsic disorder

    Get PDF
    Most of the proteins in a cell assemble into complexes to carry out their function. In this work, we have created a new database (named ComSin) of protein structures in bound (complex) and unbound (single) states to provide a researcher with exhaustive information on structures of the same or homologous proteins in bound and unbound states. From the complete Protein Data Bank (PDB), we selected 24 910 pairs of protein structures in bound and unbound states, and identified regions of intrinsic disorder. For 2448 pairs, the proteins in bound and unbound states are identical, while 7129 pairs have sequence identity 90% or larger. The developed server enables one to search for proteins in bound and unbound states with several options including sequence similarity between the corresponding proteins in bound and unbound states, and validation of interaction interfaces of protein complexes. Besides that, through our web server, one can obtain necessary information for studying disorder-to-order and order-to-disorder transitions upon complex formation, and analyze structural differences between proteins in bound and unbound states. The database is available at http://antares.protres.ru/comsin/

    Analyzing the forces binding a restriction endonuclease to DNA using a synthetic nanopore

    Get PDF
    Restriction endonucleases are used prevalently in recombinant DNA technology because they bind so stably to a specific target sequence and, in the presence of cofactors, cleave double-helical DNA specifically at a target sequence at a high rate. Using synthetic nanopores along with molecular dynamics (MD), we have analyzed with atomic resolution how a prototypical restriction endonuclease, EcoRI, binds to the DNA target sequence—GAATTC—in the absence of a Mg2+ ion cofactor. We have previously shown that there is a voltage threshold for permeation of DNA bound to restriction enzymes through a nanopore that is associated with a nanonewton force required to rupture the complex. By introducing mutations in the DNA, we now show that this threshold depends on the recognition sequence and scales linearly with the dissociation energy, independent of the pore geometry. To predict the effect of mutation in a base pair on the free energy of dissociation, MD is used to qualitatively rank the stability of bonds in the EcoRI–DNA complex. We find that the second base in the target sequence exhibits the strongest binding to the protein, followed by the third and first bases, with even the flanking sequence affecting the binding, corroborating our experiments

    Introducing Protein Intrinsic Disorder.

    Get PDF

    The Potential and Challenges of Nanopore Sequencing

    Get PDF
    A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of ‘third generation’ instruments that will sequence a diploid mammalian genome for ~$1,000 in ~24 h.Molecular and Cellular BiologyPhysic

    Introducing Protein Intrinsic Disorder

    Full text link

    Prediction of Protein Binding Regions in Disordered Proteins

    Get PDF
    Many disordered proteins function via binding to a structured partner and undergo a disorder-to-order transition. The coupled folding and binding can confer several functional advantages such as the precise control of binding specificity without increased affinity. Additionally, the inherent flexibility allows the binding site to adopt various conformations and to bind to multiple partners. These features explain the prevalence of such binding elements in signaling and regulatory processes. In this work, we report ANCHOR, a method for the prediction of disordered binding regions. ANCHOR relies on the pairwise energy estimation approach that is the basis of IUPred, a previous general disorder prediction method. In order to predict disordered binding regions, we seek to identify segments that are in disordered regions, cannot form enough favorable intrachain interactions to fold on their own, and are likely to gain stabilizing energy by interacting with a globular protein partner. The performance of ANCHOR was found to be largely independent from the amino acid composition and adopted secondary structure. Longer binding sites generally were predicted to be segmented, in agreement with available experimentally characterized examples. Scanning several hundred proteomes showed that the occurrence of disordered binding sites increased with the complexity of the organisms even compared to disordered regions in general. Furthermore, the length distribution of binding sites was different from disordered protein regions in general and was dominated by shorter segments. These results underline the importance of disordered proteins and protein segments in establishing new binding regions. Due to their specific biophysical properties, disordered binding sites generally carry a robust sequence signal, and this signal is efficiently captured by our method. Through its generality, ANCHOR opens new ways to study the essential functional sites of disordered proteins

    The Impact of Small Molecule Binding on the Energy Landscape of the Intrinsically Disordered Protein C-Myc

    Get PDF
    Intrinsically disordered proteins are attractive therapeutic targets owing to their prevalence in several diseases. Yet their lack of well-defined structure renders ligand discovery a challenging task. An intriguing example is provided by the oncoprotein c-Myc, a transcription factor that is over expressed in a broad range of cancers. Transcriptional activity of c-Myc is dependent on heterodimerization with partner protein Max. This protein-protein interaction is disrupted by the small molecule 10058-F4 (1), that binds to monomeric and disordered c-Myc. To rationalize the mechanism of inhibition, structural ensembles for the segment of the c-Myc domain that binds to 1 were computed in the absence and presence of the ligand using classical force fields and explicit solvent metadynamics molecular simulations. The accuracy of the computed structural ensembles was assessed by comparison of predicted and measured NMR chemical shifts. The small molecule 1 was found to perturb the composition of the apo equilibrium ensemble and to bind weakly to multiple distinct c-Myc conformations. Comparison of the apo and holo equilibrium ensembles reveals that the c-Myc conformations binding 1 are already partially formed in the apo ensemble, suggesting that 1 binds to c-Myc through an extended conformational selection mechanism. The present results have important implications for rational ligand design efforts targeting intrinsically disordered proteins
    corecore