34 research outputs found

    Aggregation-triggering segments of SOD1 fibril formation support a common pathway for familial and sporadic ALS

    Get PDF
    ALS is a terminal disease of motor neurons that is characterized by accumulation of proteinaceous deposits in affected cells. Pathological deposition of mutated Cu/Zn superoxide dismutase (SOD1) accounts for ∼20% of the familial ALS (fALS) cases. However, understanding the molecular link between mutation and disease has been difficult, given that more than 140 different SOD1 mutants have been observed in fALS patients. In addition, the molecular origin of sporadic ALS (sALS) is unclear. By dissecting the amino acid sequence of SOD1, we identified four short segments with a high propensity for amyloid fibril formation. We find that fALS mutations in these segments do not reduce their propensity to form fibrils. The atomic structures of two fibril-forming segments from the C terminus, ^(101)DSVISLS^(107) and ^(147)GVIGIAQ^(153), reveal tightly packed β-sheets with steric zipper interfaces characteristic of the amyloid state. Based on these structures, we conclude that both C-terminal segments are likely to form aggregates if available for interaction. Proline substitutions in 101DSVISLS107 and ^(147)GVIGIAQ^(153) impaired nucleation and fibril growth of full-length protein, confirming that these segments participate in aggregate formation. Our hypothesis is that improper protein maturation and incompletely folded states that render these aggregation-prone segments available for interaction offer a common molecular pathway for sALS and fALS

    The Physics of LIGO

    Get PDF
    In the spring term of 1994, I organized a course at Caltech on the The Physics of LIGO (i.e., the physics of the Laser Interferometer Gravitational Wave Observatory). The course consisted of eighteen 1.5-hour-long tutorial lectures, delivered by members of the LIGO team and others, and it was aimed at advanced undergraduates and graduate students in physics, applied physics and in engineering and applied sciences and also at interested postdoctoral fellows, research staff, and faculty

    Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system

    Full text link
    We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency is much smaller than the particle's orbital one. We make neither a priori assumptions about the direction of the wavevector nor on the orbital geometry of the planet. We find that, while the semi-major axis is left unaffected, the eccentricity, the inclination, the longitude of the ascending node, the longitude of pericenter and the mean anomaly undergo non-vanishing long-term changes. They are not secular trends because of the slow modulation introduced by the tidal matrix coefficients and by the orbital elements themselves. They could be useful to indepenedently constrain the ultra-low frequency waves which may have been indirectly detected in the BICEP2 experiment. Our calculation holds, in general, for any gravitationally bound two-body system whose characteristic frequency is much larger than the frequency of the external wave. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.Comment: LaTex2e, 24 pages, no figures, no tables. Changes suggested by the referees include

    Predictors and outcomes in primary depression care (POKAL) – a research training group develops an innovative approach to collaborative care

    Get PDF
    BACKGROUND: The interdisciplinary research training group (POKAL) aims to improve care for patients with depression and multimorbidity in primary care. POKAL includes nine projects within the framework of the Chronic Care Model (CCM). In addition, POKAL will train young (mental) health professionals in research competences within primary care settings. POKAL will address specific challenges in diagnosis (reliability of diagnosis, ignoring suicidal risks), in treatment (insufficient patient involvement, highly fragmented care and inappropriate long-time anti-depressive medication) and in implementation of innovations (insufficient guideline adherence, use of irrelevant patient outcomes, ignoring relevant context factors) in primary depression care. METHODS: In 2021 POKAL started with a first group of 16 trainees in general practice (GPs), pharmacy, psychology, public health, informatics, etc. The program is scheduled for at least 6 years, so a second group of trainees starting in 2024 will also have three years of research-time. Experienced principal investigators (PIs) supervise all trainees in their specific projects. All projects refer to the CCM and focus on the diagnostic, therapeutic, and implementation challenges. RESULTS: The first cohort of the POKAL research training group will develop and test new depression-specific diagnostics (hermeneutical strategies, predicting models, screening for suicidal ideation), treatment (primary-care based psycho-education, modulating factors in depression monitoring, strategies of de-prescribing) and implementation in primary care (guideline implementation, use of patient-assessed data, identification of relevant context factors). Based on those results the second cohort of trainees and their PIs will run two major trials to proof innovations in primary care-based a) diagnostics and b) treatment for depression. CONCLUSION: The research and training programme POKAL aims to provide appropriate approaches for depression diagnosis and treatment in primary care

    Absence of Ca2+-Induced Mitochondrial Permeability Transition but Presence of Bongkrekate-Sensitive Nucleotide Exchange in C. crangon and P. serratus

    Get PDF
    Mitochondria from the embryos of brine shrimp (Artemia franciscana) do not undergo Ca2+-induced permeability transition in the presence of a profound Ca2+ uptake capacity. Furthermore, this crustacean is the only organism known to exhibit bongkrekate-insensitive mitochondrial adenine nucleotide exchange, prompting the conjecture that refractoriness to bongkrekate and absence of Ca2+-induced permeability transition are somehow related phenomena. Here we report that mitochondria isolated from two other crustaceans, brown shrimp (Crangon crangon) and common prawn (Palaemon serratus) exhibited bongkrekate-sensitive mitochondrial adenine nucleotide transport, but lacked a Ca2+-induced permeability transition. Ca2+ uptake capacity was robust in the absence of adenine nucleotides in both crustaceans, unaffected by either bongkrekate or cyclosporin A. Transmission electron microscopy images of Ca2+-loaded mitochondria showed needle-like formations of electron-dense material strikingly similar to those observed in mitochondria from the hepatopancreas of blue crab (Callinectes sapidus) and the embryos of Artemia franciscana. Alignment analysis of the partial coding sequences of the adenine nucleotide translocase (ANT) expressed in Crangon crangon and Palaemon serratus versus the complete sequence expressed in Artemia franciscana reappraised the possibility of the 208-214 amino acid region for conferring sensitivity to bongkrekate. However, our findings suggest that the ability to undergo Ca2+-induced mitochondrial permeability transition and the sensitivity of adenine nucleotide translocase to bongkrekate are not necessarily related phenomena

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Quantitative analysis of lignocaine and metabolites in equine urine and plasma by liquid chromatography-tandem mass spectrometry

    No full text
    In this paper, a method for the sensitive and reproducible analysis of lignocaine and its four principal metabolites, monoethylxylidide (MEGX), glycylxylidide (GX), 3-hydroxylignocaine (3-HO-LIG), 4-hydroxylignocaine (4-HO-LIG) in equine urine and plasma samples is presented. The method uses liquid chromatography coupled to tandem mass spectrometry operating in electrospray ionisation positive ion mode (+ESI) via multiple reaction monitoring (MRM). Sample preparation involved solid-phase extraction using a mixed-mode phase. The internal standard adopted was lignocaine-d(10). Lignocaine and its metabolites were successfully resolved using an octadecylsilica reversed-phase column using a gradient mobile phase of acetonitrile and 0.1% (v/v) aqueous formic acid at a flow rate of 300 mu L/min. Target analytes and the internal standard were determined by using the following transitions; lignocaine, 235.2 > 86.1; 3-HO-LIG and 4-HO-LIG, 251.2 > 86.1; MEGX, 207.1 > 58.1; GX, 179.1 > 122.1; and lignocaine-d10, 245.2 > 96.1. Calibration curves were generated over the range 1-100 ng/mL for plasma samples and 1-1000 ng/mL for urine samples. The method was validated for instrument linearity, repeatability and detection limit (IDL), method linearity, repeatability, detection limit (MDL), quantitation limit (LOQ) and recovery. The method was successfully used to analyse both plasma and urine samples following a subcutaneous administration of lignocaine to a thoroughbred horse. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved
    corecore