168 research outputs found
Sequence dependent antitumour efficacy of the vascular disrupting agent ZD6126 in combination with paclitaxel
The clinical success of small-molecule vascular disrupting agents (VDAs) depends on their combination with conventional therapies. Scheduling and sequencing remain key issues in the design of VDA–chemotherapy combination treatments. This study examined the antitumour activity of ZD6126, a microtubule destabilising VDA, in combination with paclitaxel (PTX), a microtubule-stabilising cytotoxic drug, and the influence of schedule and sequence on the efficacy of the combination. Nude mice bearing MDA-MB-435 xenografts received weekly cycles of ZD6126 (200 mg kg−1 i.p.) administered at different times before or after PTX (10, 20, and 40 mg kg−1 i.v.). ZD6126 given 2 or 24 h after PTX showed no significant benefit, a result that was attributed to a protective effect of PTX against ZD6126-induced vascular damage and tumour necrosis, a hallmark of VDA activity. Paclitaxel counteracting activity was reduced by distancing drug administrations, and ZD6126 given 72 h after PTX potentiated the VDA's antitumour activity. Schedules with ZD6126 given before PTX improved therapeutic activity, which was paralleled by a VDA-induced increase in cell proliferation in the viable tumour tissue. Paclitaxel given 72 h after ZD6126 yielded the best response (50% tumours regressing). A single treatment with ZD6126 followed by weekly administration of PTX was sufficient to achieve a similar response (57% remissions). These findings show that schedule, sequence and timing are crucial in determining the antitumour efficacy of PTX in combination with ZD6126. Induction of tumour necrosis and increased proliferation in the remaining viable tumour tissue could be exploited as readouts to optimise schedules and maximise therapeutic efficacy
Vascular disrupting agent for neovascular age related macular degeneration: a pilot study of the safety and efficacy of intravenous combretastatin A-4 phosphate
BACKGROUND:
This study was designed to assess the safety, tolerability, and efficacy of intravenous infusion of CA4P in patients with neovascular age-related macular degeneration (AMD). METHODS:
Prospective, interventional, dose-escalation clinical trial. Eight patients with neovascular AMD refractory to at least 2 sessions of photodynamic therapy received CA4P at a dose of 27 or 36 mg/m2 as weekly intravenous infusion for 4 consecutive weeks. Safety was monitored by vital signs, ocular and physical examinations, electrocardiogram, routine laboratory tests, and collection of adverse events. Efficacy was assessed using retinal fluorescein angiography, optical coherence tomography, and best corrected visual acuity (BCVA). RESULTS:
The most common adverse events were elevated blood pressure (46.7%), QTc prolongation (23.3%), elevated temperature (13.3%), and headache (10%), followed by nausea and eye injection (6.7%). There were no adverse events that were considered severe in intensity and none resulted in discontinuation of treatment. There was reduction of the excess foveal thickness by 24.15% at end of treatment period and by 43.75% at end of the two-month follow-up (p = 0.674 and 0.161, respectively). BCVA remained stable throughout the treatment and follow-up periods. CONCLUSIONS:
The safety profile of intravenous CA4P was consistent with that reported in oncology trials of CA4P and with the class effects of vascular disruptive agents; however, the frequency of adverse events was different. There are evidences to suggest potential efficacy of CA4P in neovascular AMD. However, the level of systemic safety and efficacy indicates that systemic CA4P may not be suitable as an alternative monotherapy to current standard-of-care therapy
Enhancement of the anti-tumour effect of cyclophosphamide by the bioreductive drugs AQ4N and tirapazamine
The ability of the bioreductive drugs AQ4N and tirapazamine to enhance the anti-tumour effect of cyclophosphamide was assessed in three murine tumour models. In male BDF mice implanted with the T50/80 mammary carcinoma, AQ4N (50–150 mg kg−1) in combination with cyclophosphamide (100 mg kg−1) produced an effect equivalent to a single 200 mg kg−1dose of cyclophosphamide. Tirapazamine (25 mg kg−1) in combination with cyclophosphamide (100 mg kg−1) produced an effect equivalent to a single 150 mg kg−1dose of cyclophosphamide. In C3H mice implanted with the SCCVII or RIF-1 tumours, enhancement of tumour cell killing was found with both drugs in combination with cyclophosphamide (50–200 mg kg−1); AQ4N (50–200 mg kg−1) produced a more effective combination than tirapazamine (12.5–50 mg kg−1). Unlike tirapazamine, which showed a significant increase in toxicity to bone marrow cells, the combination of AQ4N (100 mg kg−1) 6 h prior to cyclophosphamide (100 mg kg−1) resulted in no additional toxicity towards bone marrow cells compared to that caused by cyclophosphamide alone. In conclusion, AQ4N gave a superior anti-tumour effect compared to tirapazamine when administered with a single dose of cyclophosphamide (100 mg kg−1). © 2000 Cancer Research Campaig
The use of thermographic imaging to evaluate therapeutic response in human tumour xenograft models
YesNon-invasive methods to monitor tumour growth are an important goal in cancer drug development. Thermographic imaging systems offer potential in this area, since a change in temperature is known to be induced due to changes within the tumour microenvironment. This study demonstrates that this imaging modality can be applied to a broad range of tumour xenografts and also, for the first time, the methodology’s suitability to assess anti-cancer agent efficacy. Mice bearing subcutaneously implanted H460 lung cancer xenografts were treated with a novel vascular disrupting agent, ICT-2552, and the cytotoxin doxorubicin. The effects on tumour temperature were assessed using thermographic imaging over the first 6 hours post-administration and subsequently a further 7 days. For ICT-2552 a significant initial temperature drop was observed, whilst for both agents a significant temperature drop was seen compared to controls over the longer time period. Thus thermographic imaging can detect functional differences (manifesting as temperature reductions) in the tumour response to these anti-cancer agents compared to controls. Importantly, these effects can be detected in the first few hours following treatment and therefore the tumour is observable non-invasively. As discussed, this technique will have considerable 3Rs benefits in terms of reduction and refinement of animal use.University of Bradfor
Cisplatin anti-tumour potentiation by tirapazamine results from a hypoxia-dependent cellular sensitization to cisplatin
Tirapazamine (TPZ) is a new anticancer drug that is activated specifically at the low oxygen level typically found in solid tumours. It exhibits preferential cytotoxicity towards hypoxic cells and has been shown in preclinical studies with transplanted tumours and in phase II and III clinical trials to potentiate the anti-tumour efficacy of cisplatin without increasing its systemic toxicity. At present, the mechanism for this potentiation is unknown. Here we show that there is a schedule-dependent enhancement of cisplatin cytotoxicity by TPZ for cells in vitro that is similar to that seen with transplanted murine tumours. This cisplatin potentiation depends on the TPZ exposure being at oxygen concentrations below 1%, which are typical of many cells in tumours but not in normal tissues. Also, the interaction between TPZ and cisplatin does not occur in cells mutant in ERCC4, a protein essential for repair of DNA interstrand cross-links. Incubation of the cells with TPZ under hypoxia prior to cisplatin treatment increases cisplatin-induced DNA interstrand cross-links with kinetics suggesting that TPZ inhibits or delays repair of the DNA cross-links. In conclusion, we show that the tumour-specific potentiation of cisplatin cytotoxicity is likely the result of an interaction between TPZ and cisplatin at the cellular level that requires the low oxygen levels typical of those in solid tumours. The mechanism of the interaction appears to be through a potentiation of cisplatin-induced DNA interstrand cross-links, possibly as a result of a diminished or delayed repair of these lesion
Enhanced tumour antiangiogenic effects when combining gefitinib with the antivascular agent ZD6126
Current experimental and clinical knowledge supports the optimisation of endothelial cell targeting using a strategy combining anti-EGFR drugs with antivascular agents. The purpose of the present study was to examine the effects of the association of ZD6126, an antivascular microtubule-destabilising agent, with gefitinib and irradiation on the growth of six head and neck human cancer cell lines xenografted in nude mice and to study predictive and molecular factors responsible for antitumour effects. CAL33- and Hep-2-grafted cell lines were the most sensitive to ZD6126 treatment, with VEGF levels significantly higher (P=0.0336) in these tumour xenografts compared to Detroit 562- and CAL27-grafted cell lines with relatively low VEGF levels that were not sensitive to ZD6126. In contrast, neither IL8 levels nor EGFR expression was linked to the antitumour effects of ZD6126. ZD6126 in combination with gefitinib resulted in a synergistic cytotoxic interaction with greater antitumour effects than gefitinib alone. The synergistic interaction between ZD6126 and gefitinib was corroborated by a significant decrease in CD31 labelling. The present study may serve for future innovative clinical applications, as it suggests that VEGF tumour levels are possible predictors for ZD6126 antitumour efficacy. It also supports the notion of antitumour supra-additivity when combining gefitinib and ZD6126, and identifies neoangiogenesis as the main determinant of this synergistic combination
Vascular disrupting agents in clinical development
Growth of human tumours depends on the supply of oxygen and nutrients via the surrounding vasculature. Therefore tumour vasculature is an attractive target for anticancer therapy. Apart from angiogenesis inhibitors that compromise the formation of new blood vessels, a second class of specific anticancer drugs has been developed. These so-called vascular disrupting agents (VDAs) target the established tumour vasculature and cause an acute and pronounced shutdown of blood vessels resulting in an almost complete stop of blood flow, ultimately leading to selective tumour necrosis. As a number of VDAs are now being tested in clinical studies, we will discuss their mechanism of action and the results obtained in preclinical studies. Also data from clinical studies will be reviewed and some considerations with regard to the future development are given
Suspension culture combined with chemotherapeutic agents for sorting of breast cancer stem cells
<p>Abstract</p> <p>Background</p> <p>Cancer stem cell (CSC) hypothesis has not been well demonstrated by the lack of the most convincing evidence concerning a single cell capable of giving rise to a tumor. The scarcity in quantity and improper approaches for isolation and purification of CSCs have become the major obstacles for great development in CSCs. Here we adopted suspension culture combined with anticancer regimens as a strategy for screening breast cancer stem cells (BrCSCs). BrCSCs could survive and be highly enriched in non-adherent suspension culture while chemotherapeutic agents could destroy most rapidly dividing cancer cells and spare relatively quiescent BrCSCs.</p> <p>Methods</p> <p>TM40D murine breast cancer cells were cultured in serum-free medium. The expression of CD44<sup>+</sup>CD24<sup>- </sup>was measured by flow cytometry. Cells of passage 10 were treated in combination with anticancer agents pacilitaxel and epirubicin at different peak plasma concentrations for 24 hours, and then maintained under suspension culture. The rate of apoptosis was examined by flow cytometry with Annexin-V fluorescein isothiocyanate (FITC)/propidium iodide (PI) double staining method. Selected cells in different amounts were injected subcutaneously into BALB/C mice to observe tumor formation.</p> <p>Results</p> <p>Cells of passage 10 in suspension culture had the highest percentage of CD44<sup>+</sup>CD24<sup>- </sup>(about 77 percent). A single tumor cell in 0.35 PPC could generate tumors in 3 of 20 BALB/C mice.</p> <p>Conclusion</p> <p>Suspension culture combined with anticancer regimens provides an effective means of isolating, culturing and purifying BrCSCs.</p
Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model
Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures
- …