49 research outputs found

    Composites en matières premières renouvelables et leurs procédés

    Get PDF
    National audienceThe development of new bio-based composites and efficient manufacturing methods that are suitable for series processing is the purpose of the current sub-project C4 of the Excellence Cluster MERGE, sponsored by DFG (Deutsche Forschungsgemeinschaft). Two different types of materials are combined: bio-based thermoplastic biopolymers such as bio-polyethylene (BioPE) or bio-polyamides (BioPA) and renewable reinforcing materials such as thin wood veneer or unidirectional flax fibers. To achieve a high-efficiency in terms of mass-production, reproducibility and flexibility, it is required to overlap several steps in the realization of semi-finished and final products. The improvement of the adhesion at the interface of the components, the implementation of continuous processes in order to increase energetically the yielding and the final design, through several methods, for the future potential applications are so many perspectives to achieve. MOTS-CLÉS : polymère bio-basé thermoplastique; renforcement naturel (Lin ou placage en bois) ; Amélioration de l'adhésion à l'interface matrice/renforcement ; Procédés plastic/textile continu ; Application dans l'automobile et équipement sportifsLe développement de matériaux bio-basés et de méthodes efficaces de mise en forme, adaptable à la production en série, est le but de l'actuel sous-projet C4 du programme d'excellence MERGE financé par la DFG (Deutsche Forschungsgemeinschaft). Ainsi, deux types de matériaux sont combinés : Des polymères bio-ressourcés thermoplastiques tels que bio-polyéthylène (BioPE) ou bio-polyamide (BioPA) et des matériaux de renforcements renouvelables tels que le placage en bois ou des fibres de lin unidirectionnelles continues. Pour atteindre un haut rendement en termes de production en masse, de reproductibilité et de flexibilité, il est requis de suivre plusieurs étapes dans la réalisation de produits semi-finis et finis. L'amélioration de l'adhésion à l'interface des composantes, la mise en place de procédés continus afin d'augmenter leur rendement, et la mise en forme finale, par diverses méthodes, pour des futures potentiels applications sont autant d'objectifs à atteindre

    Exploiting CRISPR-Cas9 technology to investigate individual histone modifications

    Get PDF
    Despite their importance for most DNA-templated processes, the function of individual histone modifications has remained largely unknown because in vivo mutational analyses are lacking. The reason for this is that histone genes are encoded by multigene families and that tools to simultaneously edit multiple genomic loci with high efficiency are only now becoming available. To overcome these challenges, we have taken advantage of the power of CRISPR-Cas9 for precise genome editing and of the fact that most DNA repair in the protozoan parasite Trypanosoma brucei occurs via homologous recombination. By establishing an episome-based CRISPR-Cas9 system for T. brucei, we have edited wild type cells without inserting selectable markers, inserted a GFP tag between an ORF and its 3'UTR, deleted both alleles of a gene in a single transfection, and performed precise editing of genes that exist in multicopy arrays, replacing histone H4K4 with H4R4 in the absence of detectable off-target effects. The newly established genome editing toolbox allows for the generation of precise mutants without needing to change other regions of the genome, opening up opportunities to study the role of individual histone modifications, catalytic sites of enzymes or the regulatory potential of UTRs in their endogenous environments

    The importance of transparent exopolymer particles over ballast in determining both sinking and suspension of small particles during late summer in the Northeast Pacific Ocean

    Get PDF
    Gravitational sinking of particles is a key pathway for the transport of particulate organic carbon (POC) to the deep ocean. Particle size and composition influence particle sinking velocity and thus play a critical role in controlling particle flux. Canonically, sinking particles that reach the mesopelagic are expected to be either large or ballasted by minerals. However, the presence of transparent exopolymer particles (TEP), which are positively buoyant, may also influence particle sinking velocity. We investigated the relationship between particle composition and sinking velocity during the Export Processes in the Ocean from RemoTe Sensing (EXPORTS) campaign in the Northeast Pacific Ocean using Marine Snow Catchers. Suspended and sinking particles were sized using FlowCam for particle imaging, and their biogeochemical composition was assessed by measuring the concentration of particulate organic carbon (POC) and nitrogen, particulate inorganic carbon, biogenic and lithogenic silica, and TEP. Sinking fluxes were also calculated. Overall, both suspended and sinking particles were small (<51 μm, diameter) in this late summer, oligotrophic system. Contrary to expectation, the ratio of ballast minerals to POC was higher for suspended particles than sinking particles. Further, suspended particles showed TEP-to-POC ratios three times higher than sinking particles. These ratios suggest that TEP content and not ballast dictated whether particles in this system would sink (low TEP) or remain suspended (high TEP). Fluxes of POC averaged 4.3 ± 2.5 mmol C m−2 d−1 at 50 m (n = 9) and decreased to 3.1 ± 1.1 mmol C m−2 d−1 at 300–500 m (n = 6). These flux estimates were slightly higher than fluxes measured during EXPORTS with drifting sediment traps and Thorium-234. A comparison between these approaches illustrates that small sinking particles were an important component of the POC flux in the mesopelagic of this late summer oligotrophic system

    Giant Hydrogen Sulfide Plume in the Oxygen Minimum Zone off Peru Supports Chemolithoautotrophy

    Get PDF
    In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ). OMZs can sporadically accumulate hydrogen sulfide (H2S), which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area >5500 km2, which contained ~2.2×104 tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ~440 km3 the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct γ-, δ- and ε-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide) to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ~30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that could fuel further sulfate reduction and potentially stabilize the sulfidic OMZ water

    Limits on the ultra-bright Fast Radio Burst population from the CHIME Pathfinder

    Full text link
    We present results from a new incoherent-beam Fast Radio Burst (FRB) search on the Canadian Hydrogen Intensity Mapping Experiment (CHIME) Pathfinder. Its large instantaneous field of view (FoV) and relative thermal insensitivity allow us to probe the ultra-bright tail of the FRB distribution, and to test a recent claim that this distribution's slope, αlogNlogS\alpha\equiv-\frac{\partial \log N}{\partial \log S}, is quite small. A 256-input incoherent beamformer was deployed on the CHIME Pathfinder for this purpose. If the FRB distribution were described by a single power-law with α=0.7\alpha=0.7, we would expect an FRB detection every few days, making this the fastest survey on sky at present. We collected 1268 hours of data, amounting to one of the largest exposures of any FRB survey, with over 2.4\,×\times\,105^5\,deg2^2\,hrs. Having seen no bursts, we have constrained the rate of extremely bright events to < ⁣13<\!13\,sky1^{-1}\,day1^{-1} above \sim\,220(τ/ms)\sqrt{(\tau/\rm ms)} Jy\,ms for τ\tau between 1.3 and 100\,ms, at 400--800\,MHz. The non-detection also allows us to rule out α0.9\alpha\lesssim0.9 with 95%\% confidence, after marginalizing over uncertainties in the GBT rate at 700--900\,MHz, though we show that for a cosmological population and a large dynamic range in flux density, α\alpha is brightness-dependent. Since FRBs now extend to large enough distances that non-Euclidean effects are significant, there is still expected to be a dearth of faint events and relative excess of bright events. Nevertheless we have constrained the allowed number of ultra-intense FRBs. While this does not have significant implications for deeper, large-FoV surveys like full CHIME and APERTIF, it does have important consequences for other wide-field, small dish experiments

    Characterization of the John A. Galt telescope for radio holography with CHIME

    Full text link
    The Canadian Hydrogen Intensity Mapping Experiment (CHIME) will measure the 21 cm emission of astrophysical neutral hydrogen to probe large scale structure at redshifts z=0.8-2.5. However, detecting the 21 cm signal beneath substantially brighter foregrounds remains a key challenge. Due to the high dynamic range between 21 cm and foreground emission, an exquisite calibration of instrument systematics, notably the telescope beam, is required to successfully filter out the foregrounds. One technique being used to achieve a high fidelity measurement of the CHIME beam is radio holography, wherein signals from each of CHIME's analog inputs are correlated with the signal from a co-located reference antenna, the 26 m John A. Galt telescope, as the 26 m Galt telescope tracks a bright point source transiting over CHIME. In this work we present an analysis of several of the Galt telescope's properties. We employ driftscan measurements of several bright sources, along with background estimates derived from the 408 MHz Haslam map, to estimate the Galt system temperature. To determine the Galt telescope's beam shape, we perform and analyze a raster scan of the bright radio source Cassiopeia A. Finally, we use early holographic measurements to measure the Galt telescope's geometry with respect to CHIME for the holographic analysis of the CHIME and Galt interferometric data set

    A Detection of Cosmological 21 cm Emission from CHIME in Cross-correlation with eBOSS Measurements of the Lyman-α\alpha Forest

    Full text link
    We report the detection of 21 cm emission at an average redshift zˉ=2.3\bar{z} = 2.3 in the cross-correlation of data from the Canadian Hydrogen Intensity Mapping Experiment (CHIME) with measurements of the Lyman-α\alpha forest from eBOSS. Data collected by CHIME over 88 days in the 400500400-500~MHz frequency band (1.8<z<2.51.8 < z < 2.5) are formed into maps of the sky and high-pass delay filtered to suppress the foreground power, corresponding to removing cosmological scales with k0.13 Mpc1k_\parallel \lesssim 0.13\ \text{Mpc}^{-1} at the average redshift. Line-of-sight spectra to the eBOSS background quasar locations are extracted from the CHIME maps and combined with the Lyman-α\alpha forest flux transmission spectra to estimate the 21 cm-Lyman-α\alpha cross-correlation function. Fitting a simulation-derived template function to this measurement results in a 9σ9\sigma detection significance. The coherent accumulation of the signal through cross-correlation is sufficient to enable a detection despite excess variance from foreground residuals 610\sim6-10 times brighter than the expected thermal noise level in the correlation function. These results are the highest-redshift measurement of \tcm emission to date, and set the stage for future 21 cm intensity mapping analyses at z>1.8z>1.8

    Retinal Vascular Occlusion after COVID-19 Vaccination : More Coincidence than Causal Relationship? Data from a Retrospective Multicentre Study

    Get PDF
    Background: To investigate whether vaccination against SARS-CoV-2 is associated with the onset of retinal vascular occlusive disease (RVOD). Methods: In this multicentre study, data from patients with central and branch retinal vein occlusion (CRVO and BRVO), central and branch retinal artery occlusion (CRAO and BRAO), and anterior ischaemic optic neuropathy (AION) were retrospectively collected during a 2-month index period (1 June–31 July 2021) according to a defined protocol. The relation to any previous vaccination was documented for the consecutive case series. Numbers of RVOD and COVID-19 vaccination were investigated in a case-by-case analysis. A case– control study using age- and sex-matched controls from the general population (study participants from the Gutenberg Health Study) and an adjusted conditional logistic regression analysis was conducted. Results: Four hundred and twenty-one subjects presenting during the index period (61 days) were enrolled: one hundred and twenty-one patients with CRVO, seventy-five with BRVO, fifty-six with CRAO, sixty-five with BRAO, and one hundred and four with AION. Three hundred and thirty-two (78.9%) patients had been vaccinated before the onset of RVOD. The vaccines given were BNT162b2/BioNTech/Pfizer (n = 221), followed by ChadOx1/AstraZeneca (n = 57), mRNA1273/Moderna (n = 21), and Ad26.COV2.S/Johnson & Johnson (n = 11; unknown n = 22). Our case–control analysis integrating population-based data from the GHS yielded no evidence of an increased risk after COVID-19 vaccination (OR = 0.93; 95% CI: 0.60–1.45, p = 0.75) in connection with a vaccination within a 4-week window. Conclusions: To date, there has been no evidence of any association between SARS-CoV-2 vaccination and a higher RVOD risk

    Transfer of the Interlaminar Shear Test to Veneer Layer-based Composites for Qualitative Evaluation of Layer Adhesion

    Get PDF
    This study aimed to investigate the suitability of the interlaminar shear (ILS) testing method for veneer-based composites. The ILS testing method is an established method for composite materials as a qualitative evaluation of the adhesion within the composite. The applicability of this method to veneer based composites enables a simple qualitative statement on the adhesion of the individual layers. The ILS method complements existing wood-based material tests that focus on bonding, using significantly smaller material dimensions
    corecore