468 research outputs found

    Central Neurocytoma: A Review of Clinical Management and Histopathologic Features.

    Get PDF
    Central neurocytoma (CN) is a rare, benign brain tumor often located in the lateral ventricles. CN may cause obstructive hydrocephalus and manifest as signs of increased intracranial pressure. The goal of treatment for CN is a gross total resection (GTR), which often yields excellent prognosis with a very high rate of tumor control and survival. Adjuvant radiosurgery and radiotherapy may be considered to improve tumor control when GTR cannot be achieved. Chemotherapy is also not considered a primary treatment, but has been used as a salvage therapy. The radiological features of CN are indistinguishable from those of other brain tumors; therefore, many histological markers, such as synaptophysin, can be very useful for diagnosing CNs. Furthermore, the MIB-1 Labeling Index seems to be correlated with the prognosis of CN. We also discuss oncogenes associated with these elusive tumors. Further studies may improve our ability to accurately diagnose CNs and to design the optimal treatment regimens for patients with CNs

    Gastric Lipomatosis

    Get PDF
    Gastric lipomatosis is an extremely rare condition. We present a case of a 69-year-old woman admitted with epigastric soreness. Computerized tomography (CT) revealed extrinsically compressing, fat-containing mass lesions on the entire gastric wall of the antrum and body except for the lesser curvature. A subtotal gastrectomy was performed. Pathology findings confirmed a gastric lipomatosis with multiple gastric ulcerations and extensive disruptions of the muscular layers. This case and reports of other gastric lipomatosis cases indicate that CT should be used to characterize large submucosal masses because CT can show the specific nature and extent of the disease. We believe that surgical treatment is the most appropriate treatment for symptomatic gastric lipomatosis that shows extensive gastric involvement, or when there are multiple gastric lipomas

    Gene Circuit Performance Characterization and Resource Usage in a Cell-Free “Breadboard”

    Get PDF
    The many successes of synthetic biology have come in a manner largely different from those in other engineering disciplines; in particular, without well-characterized and simplified prototyping environments to play a role analogous to wind-tunnels in aerodynamics and breadboards in electrical engineering. However, as the complexity of synthetic circuits increases, the benefits—in cost savings and design cycle time—of a more traditional engineering approach can be significant. We have recently developed an in vitro “breadboard” prototyping platform based on E. coli cell extract that allows biocircuits to operate in an environment considerably simpler than, but functionally similar to, in vivo. The simplicity of this system makes it a promising tool for rapid biocircuit design and testing, as well as for probing fundamental aspects of gene circuit operation normally masked by cellular complexity. In this work, we characterize the cell-free breadboard using real-time and simultaneous measurements of transcriptional and translational activities of a small set of reporter genes and a transcriptional activation cascade. We determine the effects of promoter strength, gene concentration, and nucleoside triphosphate concentration on biocircuit properties, and we isolate the specific contributions of essential biomolecular resources—core RNA polymerase and ribosomes—to overall performance. Importantly, we show how limits on resources, particularly those involved in translation, are manifested as reduced expression in the presence of orthogonal genes that serve as additional loads on the system

    In Situ Measurement of the Junction Temperature of Light Emitting Diodes Using a Flexible Micro Temperature Sensor

    Get PDF
    This investigation aimed to fabricate a flexible micro resistive temperature sensor to measure the junction temperature of a light emitting diode (LED). The junction temperature is typically measured using a thermal resistance measurement approach. This approach is limited in that no standard regulates the timing of data capture. This work presents a micro temperature sensor that can measure temperature stably and continuously, and has the advantages of being lightweight and able to monitor junction temperatures in real time. Micro-electro-mechanical-systems (MEMS) technologies are employed to minimize the size of a temperature sensor that is constructed on a stainless steel foil substrate (SS-304 with 30 μm thickness). A flexible micro resistive temperature sensor can be fixed between the LED chip and the frame. The junction temperature of the LED can be measured from the linear relationship between the temperature and the resistance. The sensitivity of the micro temperature sensor is 0.059 ± 0.004 Ω/°C. The temperature of the commercial CREE® EZ1000 chip is 119.97 °C when it is thermally stable, as measured using the micro temperature sensor; however, it was 126.9 °C, when measured by thermal resistance measurement. The micro temperature sensor can be used to replace thermal resistance measurement and performs reliably

    Parentage testing of Thoroughbred horse in Korea using microsatellite DNA typing

    Get PDF
    The present study was to construct a parentage testing system for Thoroughbred (TB) horse. A total number of 1,285 TB horse samples including 962 foals for parentage testing, 9 sires and 314 dams for individual identification were genotyped. Genomic DNA was extracted from 5 hair roots and genotyped by using 14 microsatellite markers (AHT4, AHT5, ASB2, ASB17, ASB23, CA425, HMS1, HMS3, HMS6, HMS7, HTG4, HTG10, LEX3 and VHL20). This method consisted of multiplexing PCR procedure and showed reasonable amplification of all PCR products. Genotypes were determined by genetic analyzer. The number of alleles per locus varied from 3 to 9 with a mean value of 6.36 in TB horse. The expected heterozygosity was ranged from 0.548 to 0.831 (mean 0.699), and the total exclusion probability of 14 microstellite loci was 0.9998. Of the 14 markers, ASB2, ASB17, ASB23, HMS7 and HTG10 loci have relatively high PIC value (> 0.7). Of the 962 foals, 960 foals were qualified by compatibility according to the Mendelism. These results suggest that the DNA typing method has high potential for parentage verification and individual identification of TB horses

    Phenotypic robustness can increase phenotypic variability after non-genetic perturbations in gene regulatory circuits

    Full text link
    Non-genetic perturbations, such as environmental change or developmental noise, can induce novel phenotypes. If an induced phenotype confers a fitness advantage, selection may promote its genetic stabilization. Non-genetic perturbations can thus initiate evolutionary innovation. Genetic variation that is not usually phenotypically visible may play an important role in this process. Populations under stabilizing selection on a phenotype that is robust to mutations can accumulate such variation. After non-genetic perturbations, this variation can become a source of new phenotypes. We here study the relationship between a phenotype's robustness to mutations and a population's potential to generate novel phenotypic variation. To this end, we use a well-studied model of transcriptional regulation circuits. Such circuits are important in many evolutionary innovations. We find that phenotypic robustness promotes phenotypic variability in response to non-genetic perturbations, but not in response to mutation. Our work suggests that non-genetic perturbations may initiate innovation more frequently in mutationally robust gene expression traits.Comment: 11 pages, 5 figure

    Tracking the Actions and Possessions of Agents

    Full text link
    We propose that there is a powerful human disposition to track the actions and possessions of agents. In two experiments, 3‐year‐olds and adults viewed sets of objects, learned a new fact about one of the objects in each set (either that it belonged to the participant, or that it possessed a particular label), and were queried about either the taught fact or an unrelated dimension (preference) immediately after a spatiotemporal transformation, and after a delay. Adults uniformly tracked object identity under all conditions, whereas children tracked identity more when taught ownership versus labeling information, and only regarding the taught fact (not the unrelated dimension). These findings suggest that the special attention that children and adults pay to agents readily extends to include inanimate objects. That young children track an object's history, despite their reliance on surface features on many cognitive tasks, suggests that unobservable historical features are foundational in human cognition.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109337/1/tops12106.pd

    Minimally invasive determination of mRNA concentration in single living bacteria

    Get PDF
    Fluorescence correlation spectroscopy (FCS) has permitted the characterization of high concentrations of noncoding RNAs in a single living bacterium. Here, we extend the use of FCS to low concentrations of coding RNAs in single living cells. We genetically fuse a red fluorescent protein (RFP) gene and two binding sites for an RNA-binding protein, whose translated product is the RFP protein alone. Using this construct, we determine in single cells both the absolute [mRNA] concentration and the associated [RFP] expressed from an inducible plasmid. We find that the FCS method allows us to reliably monitor in real-time [mRNA] down to ∼40 nM (i.e. approximately two transcripts per volume of detection). To validate these measurements, we show that [mRNA] is proportional to the associated expression of the RFP protein. This FCS-based technique establishes a framework for minimally invasive measurements of mRNA concentration in individual living bacteria

    Effects of Ploidy and Recombination on Evolution of Robustness in a Model of the Segment Polarity Network

    Get PDF
    Many genetic networks are astonishingly robust to quantitative variation, allowing these networks to continue functioning in the face of mutation and environmental perturbation. However, the evolution of such robustness remains poorly understood for real genetic networks. Here we explore whether and how ploidy and recombination affect the evolution of robustness in a detailed computational model of the segment polarity network. We introduce a novel computational method that predicts the quantitative values of biochemical parameters from bit sequences representing genotype, allowing our model to bridge genotype to phenotype. Using this, we simulate 2,000 generations of evolution in a population of individuals under stabilizing and truncation selection, selecting for individuals that could sharpen the initial pattern of engrailed and wingless expression. Robustness was measured by simulating a mutation in the network and measuring the effect on the engrailed and wingless patterns; higher robustness corresponded to insensitivity of this pattern to perturbation. We compared robustness in diploid and haploid populations, with either asexual or sexual reproduction. In all cases, robustness increased, and the greatest increase was in diploid sexual populations; diploidy and sex synergized to evolve greater robustness than either acting alone. Diploidy conferred increased robustness by allowing most deleterious mutations to be rescued by a working allele. Sex (recombination) conferred a robustness advantage through “survival of the compatible”: those alleles that can work with a wide variety of genetically diverse partners persist, and this selects for robust alleles

    Noise-Driven Phenotypic Heterogeneity with Finite Correlation Time in Clonal Populations

    Get PDF
    There has been increasing awareness in the wider biological community of the role of clonal phenotypic heterogeneity in playing key roles in phenomena such as cellular bet-hedging and decision making, as in the case of the phage-λ lysis/lysogeny and B. Subtilis competence/vegetative pathways. Here, we report on the effect of stochasticity in growth rate, cellular memory/intermittency, and its relation to phenotypic heterogeneity. We first present a linear stochastic differential model with finite auto-correlation time, where a randomly fluctuating growth rate with a negative average is shown to result in exponential growth for sufficiently large fluctuations in growth rate. We then present a non-linear stochastic self-regulation model where the loss of coherent self-regulation and an increase in noise can induce a shift from bounded to unbounded growth. An important consequence of these models is that while the average change in phenotype may not differ for various parameter sets, the variance of the resulting distributions may considerably change. This demonstrates the necessity of understanding the influence of variance and heterogeneity within seemingly identical clonal populations, while providing a mechanism for varying functional consequences of such heterogeneity. Our results highlight the importance of a paradigm shift from a deterministic to a probabilistic view of clonality in understanding selection as an optimization problem on noise-driven processes, resulting in a wide range of biological implications, from robustness to environmental stress to the development of drug resistance
    corecore