36 research outputs found

    Effect of chemical degradation followed by toothbrushing on the surface roughness of restorative composites

    Get PDF
    OBJECTIVES: The aim of the present study was to assess the effect of the exposure to food-simulating liquids prior to brushing simulation on the surface roughness of five composite materials (Quixfil, Filtek Supreme, Esthet-X, Filtek Z250, Tetric Ceram). MATERIAL AND METHODS: Twenty cylinders (5 mm diameter and 4 mm height) of each composite were randomly allocated to 4 groups (n=5), according to the food-simulating liquid in which they were immersed for 7 days at 37ºC: artificial saliva, heptane, citric acid, and ethanol. After this period, the top surface of composite cylinders was submitted to 7,500 brushing cycles (200 g load). Measurements of the surface roughness (Ra, µm) were carried out before and after the exposure to the chemicals/brushing simulation. Changes on the morphology of composite surfaces were observed through scanning electron microscopy (SEM). RESULTS: The statistical analysis (ANOVA with cofactor / Tukey's test, α=5%) detected a significant interaction between solutions and composite resins. Esthet-X, Filtek Z250 and Tetric Ceram were not affected by the food-simulating liquids/toothbrushing. Citric acid and ethanol increased the surface roughness of Quixfil and Filtek Supreme, respectively. SEM images corroborate the surface roughness findings, demonstrating the negative effect from chemical solutions and mechanical abrasion. CONCLUSIONS: The surface roughness of composite resin materials are differently affected by the food-simulating solutions, depending on the immersion media

    Origin of micro-scale heterogeneity in polymerisation of photo-activated resin composites

    Get PDF
    Photo-activated resin composites are widely used in industry and medicine. Despite extensive chemical characterisation, the micro-scale pattern of resin matrix reactive group conversion between filler particles is not fully understood. Using an advanced synchrotron-based wide-field IR imaging system and state-of-the-art Mie scattering corrections, we observe how the presence of monodispersed silica filler particles in a methacrylate based resin reduces local conversion and chemical bond strain in the polymer phase. Here we show that heterogeneity originates from a lower converted and reduced bond strain boundary layer encapsulating each particle, whilst at larger inter-particulate distances light attenuation and monomer mobility predominantly influence conversion. Increased conversion corresponds to greater bond strain, however, strain generation appears sensitive to differences in conversion rate and implies subtle distinctions in the final polymer structure. We expect these findings to inform current predictive models of mechanical behaviour in polymer-composite materials, particularly at the resin-filler interface

    Physical properties of a hybrid and a nanohybrid dental light-cured resin composite

    No full text
    This work was aimed at the study of some physical properties of two current light-cured dental resin composites, Rok (hybrid) and Ice (nanohydrid). As filler they both contain strontium aluminosilicate particles, however, with different size distribution, 40 nm-2.5 μm for Rok and 10 nm-1 μm for Ice. The resin matrix of Rok consists of UDMA, that of Ice of UDMA, Bis-EMA and TEGDMA. Degree of conversion was determined by FT-IR analysis. The flexural strength and modulus were measured using a three-point bending set-up according to the ISO-4049 specification. Sorption, solubility and volumetric change were measured after storage of composites in water or ethanol/water (75 vol%) for 1 day, 7 or 30 days. Thermogravimetric analysis was performed in air and nitrogen atmosphere from 30 to 700°C. Surface roughness and morphology of the composites was studied by atomic force microscopy (AFM). The degree of conversion was found to be 56.9% for Rok and 61.0% for Ice. The flexural strength of Rok does not significantly differ from that of Ice, while the flexural modulus of Rok is higher than that of Ice. The flexural strengths of Rok and Ice did not show any significant change after immersion in water or ethanol solution for 30 days. The flexural modulus of Rok and Ice did not show any significant change either after immersion in water for 30 days, while it decreased significantly, even after 1 day immersion, in ethanol solution. Ice sorbed a higher amount of water and ethanol solution than Rok and showed a higher volume increase. Thermogravimetric analysis showed that Rok contains about 80 wt% inorganic filler and Ice about 75 wt%. © 2009 Koninklijke Brill NV, Leiden

    Effect of the silane concentration on the selected properties of an experimental microfilled composite resin

    Get PDF
    The aim of present study was evaluate the effect of different percentages of an organo-functionalized silane monomer as adhesion promoter between barium borosilicate glass fillers and (co)monomer blend in experimental dental composite resin. Gamma-methacryloxypropyltrimethoxysilane (γ-MPS) was assessed in an experimental luting cement, at the concentrations of 0, 1, 3, 5, 7 and 10 (wt%). The experimental resin without fillers was used as control group. The flexural strength (FS) and elastic modulus (E) were obtained by mini-flexural test and expressed in MPa and GPa, respectively. Water sorption (WS) and solubility (SL) were determined based on ISO standard 4049:2000. Kruskal–Wallis and Student–Newman–Keuls test were used for comparisons of FS, E and WS. The comparisons of SL means were performed using one-way ANOVA and Tukey's method (α = 5 %). The treatment with 3 % silane revealed statistically higher FS, while the group treated with 1 % silane showed statistically higher E than 3 % silane (p < 0.05) and E similar to control. The experimental composite without filler content showed the highest SL (p < 0.05) while the control composite showed the highest WS (p < 0.05). Based on present findings, flexural strength and elastic modulus can sometimes be improved with lower concentrations (1–3 %) rather than higher concentrations (5–7 %) of the silane (γ-MPS) used as coupling agent on barium borosilicate glass filler microparticles of the dental composite resin
    corecore