109 research outputs found

    Novi pristup spektrofotometrijskom određivanju metronidazola i tinidazola koristeći p-dimetilaminobenzaldehid

    Get PDF
    A new approach to the spectrophotometric determination of metronidazole (MZ) and tinidazole (TZ) has been developed. The procedure involves coupling of diazotized nitroimidazoles with p-dimethylaminobenzaldehyde (DMAB) to form a greenish-yellow solution. Optimal temperature and time for diazotization were 0 oC (iced) and 3 minutes and 30 oC and 2 minutes for coupling was, respectively, for both MZ and TZ. Coloured adducts of MZ and TZ showed peaks at 406 nm and 404 nm, respectively, which were selected as analytical wavelengths. The reaction with p-DMAB occurred in a 1:1 mole ratio. Beer’s law was obeyed within the 4.8–76.8 µg mL1 concentration range with low limits of detection. The azo adducts were stable for over a week. Molar absorptivities were 1.10 x 103 (MZ) and 1.30 x 103 L mol1 cm1 (TZ). Overall recoveries of MZ and TZ from quality control samples were 103.2 ± 1.3 and 101.9 ± 1.3 % over three days. There was no interference from commonly utilized tablet excipients. No significant difference was obtained between the results of the new method and the BP titrimetric procedures. The azo approach using the p-dimethylaminobenzaldehyde procedure described in this paper is simple, fast, accurate and precise. It is the first application of DMAB as a coupling component in the diazo coupling reaction.U radu je opisan novi način spektrofotometrijskog određivanja metronidazola (MZ) i tinidazola (TZ). Postupak uključuje reakciju diazotiranog nitroimidazola s p-dimetilaminobenzaldehidom (DMAB), pri čemu nastaje zelenkasto-žuta otopina. Optimalna temperatura i vrijeme za diazotaciju su 0 oC (ledena kupelj) i 3 minute, a za reakciju kondenzacije 30 oC i 2 minute. Obojeni adukti imaju maksimum apsorpcije pri 406, odnosno 404 nm pa su te valne duljine izabrane za analitički postupak. Reakcija s p-DMAB zbiva se u množinskom omjeru 1:1. Reakcija slijedi Beerov zakon u koncentracijskom rasponu 4,8–76,8 µg mL1 s niskim granicama detekcije. Azo adukti su stabilni preko tjedan dana. Molarna apsorptivnost bila je 1,10 × 103 (MZ), odnosno 1,30 × 103 L mol1 cm1 (TZ). Ukupni povrat MZ i TZ iz kontrolnih uzoraka bio je 103,2 ± 1,3, odnosno 101,9 ± 1,3 % tijekom tri dana. Nije zamijećena nikakva interferencija uobičajenih pomoćnih tvari koje se koriste za tabletiranje. Ne postoji značajna razlika između rezultata dobivenih novom metodom i rezultata dobivenih BP titrimetrijskim postupkom. Metoda određivanja opisana u ovom radu je jednostavna, brza, pogodna, točna i precizna i po prvi puta uključuje DMAB u reakciji diazo kopulacije

    Vaccination against Heterologous R5 Clade C SHIV: Prevention of Infection and Correlates of Protection

    Get PDF
    A safe, efficacious vaccine is required to stop the AIDS pandemic. Disappointing results from the STEP trial implied a need to include humoral anti-HIV-1 responses, a notion supported by RV144 trial data even though correlates of protection are unknown. We vaccinated rhesus macaques with recombinant simian immunodeficiency virus (SIV) Gag-Pol particles, HIV-1 Tat and trimeric clade C (HIV-C) gp160, which induced cross-neutralizing antibodies (nAbs) and robust cellular immune responses. After five low-dose mucosal challenges with a simian-human immunodeficiency virus (SHIV) that encoded a heterologous R5 HIV-C envelope (22.1% divergence from the gp160 immunogen), 94% of controls became viremic, whereas one third of vaccinees remained virus-free. Upon high-dose SHIV rechallenge, all controls became infected, whereas some vaccinees remained aviremic. Peak viremia was inversely correlated with both cellular immunity (p<0.001) and cross-nAb titers (p<0.001). These data simultaneously linked cellular as well as humoral immune responses with the degree of protection for the first time

    Human Epidermal Neural Crest Stem Cells (hEPI-NCSC)—Characterization and Directed Differentiation into Osteocytes and Melanocytes

    Get PDF
    Here we describe the isolation, characterisation and ex-vivo expansion of human epidermal neural crest stem cells (hEPI-NCSC) and we provide protocols for their directed differentiation into osteocytes and melanocytes. hEPI-NCSC are neural crest-derived multipotent stem cells that persist into adulthood in the bulge of hair follicles. Multipotency and self-renewal were determined by in vitro clonal analyses. hEPI-NCSC generate all major neural crest derivatives, including bone/cartilage cells, neurons, Schwann cells, myofibroblasts and melanocytes. Furthermore, hEPI-NCSC express additional neural crest stem cell markers and global stem cell genes. To variable degrees and in a donor-dependent manner, hEPI-NCSC express the six essential pluripotency genes C-MYC, KLF4, SOX2, LIN28, OCT-4/POU5F1 and NANOG. hEPI-NCSC can be expanded ex vivo into millions of stem cells that remain mulitpotent and continue to express stem cell genes. The novelty of hEPI-NCSC lies in the combination of their highly desirable traits. hEPI-NCSC are embryonic remnants in a postnatal location, the bulge of hair follicles. Therefore they are readily accessible in the hairy skin by minimal invasive procedure. hEPI-NCSC are multipotent somatic stem cells that can be isolated reproducibly and with high yield. By taking advantage of their migratory ability, hEPI-NCSC can be isolated as a highly pure population of stem cells. hEPI-NCSC can undergo robust ex vivo expansion and directed differentiation. As somatic stem cells, hEPI-NCSC are conducive to autologous transplantation, which avoids graft rejection. Together, these traits make hEPI-NCSC novel and attractive candidates for future cell-based therapies and regenerative medicine

    In Situ Spatiotemporal Mapping of Flow Fields around Seeded Stem Cells at the Subcellular Length Scale

    Get PDF
    A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV) for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD) predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms

    R5-SHIV Induces Multiple Defects in T Cell Function during Early Infection of Rhesus Macaques Including Accumulation of T Reg Cells in Lymph Nodes

    Get PDF
    Background: HIV-1 is a pathogen that T cell responses fail to control. HIV-1gp120 is the surface viral envelope glycoprotein that interacts with CD4 T cells and mediates entry. HIV-1gp120 has been implicated in immune dysregulatory functions that may limit anti-HIV antigen-specific T cell responses. We hypothesized that in the context of early SHIV infection, immune dysregulation of antigen-specific T-effector cell and regulatory functions would be detectable and that these would be associated or correlated with measurable concentrations of HIV-1gp120 in lymphoid tissues. Methods: Rhesus macaques were intravaginally inoculated with a Clade C CCR5-tropic simian-human immunodeficiency virus, SHIV-1157ipd3N4. HIV-1gp120 levels, antigen-specificity, levels of apoptosis/anergy and frequency and function of Tregs were examined in lymph node and blood derived T cells at 5 and 12 weeks post inoculation. Results/Conclusions: We observed reduced responses to Gag in CD4 and gp120 in CD8 lymph node-derived T cells compared to the peripheral blood at 5 weeks post-inoculation. Reduced antigen-specific responses were associated with higher levels of PD-1 on lymph node-derived CD4 T cells as compared to peripheral blood and uninfected lymph node-derived CD4 T cells. Lymph nodes contained increased numbers of Tregs as compared to peripheral blood, which positively correlated with gp120 levels; T regulatory cell depletion restored CD8 T cell responses to Gag but not to gp120. HIV gp120 was also able to induce T regulatory cell chemotaxis in a dose-dependent, CCR5-mediated manner. These studies contribute to our broader understanding of the ways in which HIV-1 dysregulates T cell function and localization during early infection

    What does the structure-function relationship of the HIV-1 Tat protein teach us about developing an AIDS vaccine?

    Get PDF
    The human immunodeficiency virus type 1 (HIV-1) trans-activator of transcription protein Tat is an important factor in viral pathogenesis. In addition to its function as the key trans-activator of viral transcription, Tat is also secreted by the infected cell and taken up by neighboring cells where it has an effect both on infected and uninfected cells. In this review we will focus on the relationship between the structure of the Tat protein and its function as a secreted factor. To this end we will summarize some of the exogenous functions of Tat that have been implicated in HIV-1 pathogenesis and the impact of structural variations and viral subtype variants of Tat on those functions. Finally, since in some patients the presence of Tat-specific antibodies or CTL frequencies are associated with slow or non-progression to AIDS, we will also discuss the role of Tat as a potential vaccine candidate, the advances made in this field, and the importance of using a Tat protein capable of eliciting a protective or therapeutic immune response to viral challenge

    The global burden of adolescent and young adult cancer in 2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15–39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods: Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15–39 years to define adolescents and young adults. Findings: There were 1·19 million (95% UI 1·11–1·28) incident cancer cases and 396 000 (370 000–425 000) deaths due to cancer among people aged 15–39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59·6 [54·5–65·7] per 100 000 person-years) and high-middle SDI countries (53·2 [48·8–57·9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14·2 [12·9–15·6] per 100 000 person-years) and middle SDI (13·6 [12·6–14·8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23·5 million (21·9–25·2) DALYs to the global burden of disease, of which 2·7% (1·9–3·6) came from YLDs and 97·3% (96·4–98·1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation: Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Funding: Bill &amp; Melinda Gates Foundation, American Lebanese Syrian Associated Charities, St Baldrick's Foundation, and the National Cancer Institute

    The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Worldwide, both the incidence and death rates of pancreatic cancer are increasing. Evaluation of pancreatic cancer burden and its global, regional, and national patterns is crucial to policy making and better resource allocation for controlling pancreatic cancer risk factors, developing early detection methods, and providing faster and more effective treatments. Methods: Vital registration, vital registration sample, and cancer registry data were used to generate mortality, incidence, and disability-adjusted life-years (DALYs) estimates. We used the comparative risk assessment framework to estimate the proportion of deaths attributable to risk factors for pancreatic cancer: smoking, high fasting plasma glucose, and high body-mass index. All of the estimates were reported as counts and age-standardised rates per 100 000 person-years. 95% uncertainty intervals (UIs) were reported for all estimates. Findings: In 2017, there were 448 000 (95% UI 439 000\u2013456 000) incident cases of pancreatic cancer globally, of which 232 000 (210 000\u2013221 000; 51\ub79%) were in males. The age-standardised incidence rate was 5\ub70 (4\ub79\u20135\ub71) per 100 000 person-years in 1990 and increased to 5\ub77 (5\ub76\u20135\ub78) per 100 000 person-years in 2017. There was a 2\ub73 times increase in number of deaths for both sexes from 196 000 (193 000\u2013200 000) in 1990 to 441 000 (433 000\u2013449 000) in 2017. There was a 2\ub71 times increase in DALYs due to pancreatic cancer, increasing from 4\ub74 million (4\ub73\u20134\ub75) in 1990 to 9\ub71 million (8\ub79\u20139\ub73) in 2017. The age-standardised death rate of pancreatic cancer was highest in the high-income super-region across all years from 1990 to 2017. In 2017, the highest age-standardised death rates were observed in Greenland (17\ub74 [15\ub78\u201319\ub70] per 100 000 person-years) and Uruguay (12\ub71 [10\ub79\u201313\ub75] per 100 000 person-years). These countries also had the highest age-standardised death rates in 1990. Bangladesh (1\ub79 [1\ub75\u20132\ub73] per 100 000 person-years) had the lowest rate in 2017, and S\ue3o Tom\ue9 and Pr\uedncipe (1\ub73 [1\ub71\u20131\ub75] per 100 000 person-years) had the lowest rate in 1990. The numbers of incident cases and deaths peaked at the ages of 65\u201369 years for males and at 75\u201379 years for females. Age-standardised pancreatic cancer deaths worldwide were primarily attributable to smoking (21\ub71% [18\ub78\u201323\ub77]), high fasting plasma glucose (8\ub79% [2\ub71\u201319\ub74]), and high body-mass index (6\ub72% [2\ub75\u201311\ub74]) in 2017. Interpretation: Globally, the number of deaths, incident cases, and DALYs caused by pancreatic cancer has more than doubled from 1990 to 2017. The increase in incidence of pancreatic cancer is likely to continue as the population ages. Prevention strategies should focus on modifiable risk factors. Development of screening programmes for early detection and more effective treatment strategies for pancreatic cancer are needed. Funding: Bill &amp; Melinda Gates Foundation

    The global, regional, and national burden of adult lip, oral, and pharyngeal cancer in 204 countries and territories:A systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Importance Lip, oral, and pharyngeal cancers are important contributors to cancer burden worldwide, and a comprehensive evaluation of their burden globally, regionally, and nationally is crucial for effective policy planning.Objective To analyze the total and risk-attributable burden of lip and oral cavity cancer (LOC) and other pharyngeal cancer (OPC) for 204 countries and territories and by Socio-demographic Index (SDI) using 2019 Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study estimates.Evidence Review The incidence, mortality, and disability-adjusted life years (DALYs) due to LOC and OPC from 1990 to 2019 were estimated using GBD 2019 methods. The GBD 2019 comparative risk assessment framework was used to estimate the proportion of deaths and DALYs for LOC and OPC attributable to smoking, tobacco, and alcohol consumption in 2019.Findings In 2019, 370 000 (95% uncertainty interval [UI], 338 000-401 000) cases and 199 000 (95% UI, 181 000-217 000) deaths for LOC and 167 000 (95% UI, 153 000-180 000) cases and 114 000 (95% UI, 103 000-126 000) deaths for OPC were estimated to occur globally, contributing 5.5 million (95% UI, 5.0-6.0 million) and 3.2 million (95% UI, 2.9-3.6 million) DALYs, respectively. From 1990 to 2019, low-middle and low SDI regions consistently showed the highest age-standardized mortality rates due to LOC and OPC, while the high SDI strata exhibited age-standardized incidence rates decreasing for LOC and increasing for OPC. Globally in 2019, smoking had the greatest contribution to risk-attributable OPC deaths for both sexes (55.8% [95% UI, 49.2%-62.0%] of all OPC deaths in male individuals and 17.4% [95% UI, 13.8%-21.2%] of all OPC deaths in female individuals). Smoking and alcohol both contributed to substantial LOC deaths globally among male individuals (42.3% [95% UI, 35.2%-48.6%] and 40.2% [95% UI, 33.3%-46.8%] of all risk-attributable cancer deaths, respectively), while chewing tobacco contributed to the greatest attributable LOC deaths among female individuals (27.6% [95% UI, 21.5%-33.8%]), driven by high risk-attributable burden in South and Southeast Asia.Conclusions and Relevance In this systematic analysis, disparities in LOC and OPC burden existed across the SDI spectrum, and a considerable percentage of burden was attributable to tobacco and alcohol use. These estimates can contribute to an understanding of the distribution and disparities in LOC and OPC burden globally and support cancer control planning efforts
    corecore