64 research outputs found

    Prediction of Irradiation Spectrum Effects in Pyrochlores

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11837-014-1158-xThe formation energy of cation antisites in pyrochlores (A2B2O7) has been correlated with the susceptibility to amorphize under irradiation, and thus, density functional theory calculations of antisite energetics can provide insights into the radiation tolerance of pyrochlores. Here, we show that the formation energy of antisite pairs in titanate pyrochlores, as opposed to other families of pyrochlores (B = Zr, Hf, or Sn), exhibits a strong dependence on the separation distance between the antisites. Classical molecular dynamics simulations of collision cascades in Er2Ti2O7 show that the average separation of antisite pairs is a function of the primary knock-on atom energy that creates the collision cascades. Together, these results suggest that the radiation tolerance of titanate pyrochlores may be sensitive to the irradiation conditions and might be controllable via the appropriate selection of ion beam parameters

    Using Machine Learning To Identify Factors That Govern Amorphization of Irradiated Pyrochlores

    Get PDF
    Structure–property relationships are a key materials science concept that enables the design of new materials. In the case of materials for application in radiation environments, correlating radiation tolerance with fundamental structural features of a material enables materials discovery. Here, we use a machine learning model to examine the factors that govern amorphization resistance in the complex oxide pyrochlore (A2B2O7) in a regime in which amorphization occurs as a consequence of defect accumulation. We examine the fidelity of predictions based on cation radii and electronegativities, the oxygen positional parameter, and the energetics of disordering and amorphizing the material. No one factor alone adequately predicts amorphization resistance. We find that when multiple families of pyrochlores (with different B cations) are considered, radii and electronegativities provide the best prediction, but when the machine learning model is restricted to only the B = Ti pyrochlores, the energetics of disordering and amorphization are critical factors. We discuss how these static quantities provide insight into an inherently kinetic property such as amorphization resistance at finite temperature. This work provides new insight into the factors that govern the amorphization susceptibility and highlights the ability of machine learning approaches to generate that insight

    Luminescent properties and reduced dimensional behavior of hydrothermally prepared Y <inf>2</inf>SiO <inf>5</inf>: Ce nanophosphors

    Get PDF
    Hydrothermally prepared nanophosphor Y2 Si O5: Ce crystallizes in the P 21 c structure, rather than the B2b structure observed in bulk material. Relative to bulk powder, nanophosphors of particle size ∼25-100 nm diameter exhibit redshifts of the photoluminescence excitation and emission spectra, reduced self absorption, enhanced light output, and medium-dependent radiative lifetime. Photoluminescence data are consistent with reduced symmetry of the P 21 c structure and are not necessarily related to reduced dimensionality of the nanophosphor. In contrast, medium-dependent lifetime and enhanced light output are attributed to nanoscale behavior. Perturbation of the Ce ion electric field is responsible for the variable lifetime. © 2006 American Institute of Physics

    A comparison of bonding and charge density in delta-UO3, gamma-UO3, and La6UO12

    No full text
    This computational paper examines the effect of local atomic environments on the electron charge density in δ−UO3, γ−UO3, and La6UO12. In particular, this paper reveals differences in the uranium local atomic environments in these model oxide compounds. To examine the differences in a quantitative way, atoms-in-molecule (AIM) and Bader analysis methods were used to interrogate the electron charge density. The electron charge-density distribution in each compound was obtained using density functional theory. The AIM-Bader analyses provided estimates for the so-called Bader charges on individual lattice atoms, as well as the locations of the bond critical points (BCPs) between bonding atoms and the charge densities at the BCPs. Calculation results revealed a quantitative inverse correlation between the charge density at the BCP and the U-O bond length. In addition, this inverse correlation was found to be surprisingly similar to a well-established crystal chemical relationship between bond strength and bond length

    Room temperature ferromagnetism of Co doped TiO<inf>2</inf> using ion implantation and defect engineering

    No full text
    Ferromagnetic (FM) semiconductors obtained by doping ferromagnetic elements into a nonmagnetic semiconductor matrix are essential for the second generation of spintronics devices. In this study, we investigate Co doping behavior and subsequent magnetic properties in Co implanted and thermally annealed TiO2. In TiO2 single crystals, a decrease in the oxygen partial pressure during thermal annealing is found to enhance the Co substitutional fraction by increasing the concentration of oxygen vacancies. Magnetic properties determined from superconducting quantum interference device magnetometer (SQUID) measurements show that TiO2 crystals with a large fraction of substitutional Co are ferromagnetic at room temperature. In addition to single crystals, the feasibility of Co doping via ion implantation is studied in sol-gel synthesized TiO2 thin films. Results from grazing incidence X-ray diffraction (GIXRD) show that the implantation can produce Co doped TiO2 thin films and that the Co incorporation into Ti lattice site accompanies the transition from rutile to anatase phase. These results show that ion beam synthesis is a useful tool for producing ferromagnetic TiO2 with a high Curie temperature (TC). © 2006 Elsevier B.V. All rights reserved

    Radiation Tolerance of Nanocrystalline Ceramics: Insights from Yttria Stabilized Zirconia

    Get PDF
    Materials for applications in hostile environments, such as nuclear reactors or radioactive waste immobilization, require extremely high resistance to radiation damage, such as resistance to amorphization or volume swelling. Nanocrystalline materials have been reported to present exceptionally high radiation-tolerance to amorphization. In principle, grain boundaries that are prevalent in nanomaterials could act as sinks for point-defects, enhancing defect recombination. In this paper we present evidence for this mechanism in nanograined Yttria Stabilized Zirconia (YSZ), associated with the observation that the concentration of defects after irradiation using heavy ions (Kr(+), 400 keV) is inversely proportional to the grain size. HAADF images suggest the short migration distances in nanograined YSZ allow radiation induced interstitials to reach the grain boundaries on the irradiation time scale, leaving behind only vacancy clusters distributed within the grain. Because of the relatively low temperature of the irradiations and the fact that interstitials diffuse thermally more slowly than vacancies, this result indicates that the interstitials must reach the boundaries directly in the collision cascade, consistent with previous simulation results. Concomitant radiation-induced grain growth was observed which, as a consequence of the non-uniform implantation, caused cracking of the nano-samples induced by local stresses at the irradiated/non-irradiated interfaces
    corecore