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ABSTRACT: Structure−property relationships are a key
materials science concept that enables the design of new
materials. In the case of materials for application in radiation
environments, correlating radiation tolerance with fundamental
structural features of a material enables materials discovery.
Here, we use a machine learning model to examine the factors
that govern amorphization resistance in the complex oxide
pyrochlore (A2B2O7) in a regime in which amorphization
occurs as a consequence of defect accumulation. We examine the fidelity of predictions based on cation radii and
electronegativities, the oxygen positional parameter, and the energetics of disordering and amorphizing the material. No one
factor alone adequately predicts amorphization resistance. We find that when multiple families of pyrochlores (with different B
cations) are considered, radii and electronegativities provide the best prediction, but when the machine learning model is
restricted to only the B = Ti pyrochlores, the energetics of disordering and amorphization are critical factors. We discuss how
these static quantities provide insight into an inherently kinetic property such as amorphization resistance at finite temperature.
This work provides new insight into the factors that govern the amorphization susceptibility and highlights the ability of machine
learning approaches to generate that insight.

■ INTRODUCTION

Designing materials for advanced or next-generation applica-
tions requires understanding how properties are related to
structure, that is, identifying so-called structure−property
relationships. Having such relationships guides the search for
new materials with enhanced performance by identifying
regions of structure and composition space that exhibit superior
properties. For nuclear energy materials, a key performance
metric is tolerance against radiation damage. Pyrochlores
(A2B2O7) have been extensively studied for their potential
application as nuclear waste forms1−10 and have been
incorporated into some compositions of the SYNROC waste
form.11 In this context, significant effort has been directed
toward understanding how the chemistry of the pyrochlore, the
nature of the A and B cations, dictates the amorphization
susceptibility of the compound. In particular, several exper-
imental efforts12−16 have been focused on determining the
critical amorphization temperature, TC, the temperature at
which the material recovery rate is equal to or faster than the
rate of damage, as summarized in Figure 1. Typically, these
experiments were performed in an electron microscope
equipped with an ion source, such that samples were
simultaneously irradiated with electrons and 1 MeV Kr ions.

Though the value of TC varies with ion irradiation conditions,17

1 MeV Kr ion irradiation results should be comparable and thus
provide a common reference for comparing susceptibility to
amorphization of chemically distinct compounds.
As a consequence, a number of “features”, or basic structural

and energetic properties, have been identified that provide
insight into the radiation response of pyrochlores. These
include the radii and electronegativities of the A and B
cations;8,13 the x parameter, which describes how the oxygen
sublattice deviates from ideality;4,8,13 the enthalpy of formation
of the pyrochlore;6,18 and the energy to disorder the pyrochlore
to a disordered fluorite structure.1,19 Further, there has been
discussion on the extent of the disordered phase field in the
phase diagram and its relationship to amorphization resistance.7

Most of these features have been only heuristically correlated
with amorphization resistance or only applied to a subset of
pyrochlore chemistries. We are only aware of one attempt to
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quantify the relationship between these types of features and a
prediction of TC. In that work, Lumpkin and co-workers
established a relationship between TC and lattice constants,
electronegativies, disordering energetics, and oxygen positional
parameter.8 While their model provided a significant advance in
describing the structure−property relationships of pyrochlores,
here we demonstrate how, through the use of machine learning,
greater insight can be extracted. In particular, while they
considered the disordering energy as one of their features, they
used data from atomistic potentials that does not adequately
describe all of the chemistries in the experiments. Further, they
did not have access to data describing the amorphous state of
these compounds. Finally, modern machine learning methods,
applied to materials science, offer new avenues to examine the
structure−property relationships in these types of systems.
Here, we use machine learning methods to demonstrate how

a set of features, for a range of pyrochlore chemistries, can be
used to predict TC. We use both structural parameters such as
cation radius and electronegativity supplemented by energetics
calculated with density functional theory (DFT) to build a
database of features as a function of pyrochlore chemistry. We
analyze this database, building machine learning models that
predict TC as a function of pyrochlore chemistry based on a
systematic collection of features. We consider pyrochlore
chemistries for which experimental data exists for TC, which
includes pyrochlores where B = Ti, Zr, Hf, and Sn. [Here, and
in what follows, when we refer to the B cation, we mean the B
chemistry of the pyrochlore (the nature of the 4+ species).] We
find that, when considering the full range of chemistries, the
two features that best predict TC are the ratio of the radii and
the difference in electronegativities of the A and B cations.
However, to predict more subtle dependencies of TC with
pyrochlore chemistry characteristic of a given B chemistry, the
energies to disorder and amorphize the compound provide a
better prediction of TC. Importantly, the energy to disorder the
compound alone does not correlate with TC and must be
complemented by information about the energy to amorphize
the material.
As compared to Ti, Hf, or Zr, Sn is a chemically very

different element. It, like Ti, is multivalent, but unlike Ti, it has
a much stronger prevalence to adopt a charge state other than
4+. Further, as discussed below, it has a significantly higher

electronegativity than the other B cations, producing a more
covalent bond. This implies that Sn pyrochlores should be less
amorphization resistant.20 However, experiments have shown
Sn pyrochlores to be more amorphization resistant than other
pyrochlores.5 This all suggests that Sn pyrochlores are
electronically much more complex than the other pyrochlore
families, which is one reason that we use DFT to determine the
energetics of disordering and amorphization, as DFT can
account for the varied valence of the Sn cations. Further, the
inclusion of Sn pyrochlores in this analysis, precisely because
the behavior is counterintuitive, provides a more stringent test
of the methodology.
It is important to emphasize that, in this paper, we are

regarding TC as a metric that correlates with the relative
amorphization resistance of different compounds. As discussed
below, TC is not an intrinsic property of a material, but depends
on external factors such as irradiation conditions. In particular,
the mechanism of amorphization changes with irradiation
conditions.21 Our analysis pertains only to irradiation
conditions in which amorphization proceeds via a defect
accumulation mechanism. TC is also a complicated function of
material properties. Thus, actually predicting TC for a given
compound and irradiation condition is extremely challenging.
However, differences in TC are expected to indicate how easily
one compound can be amorphized compared to another. By
correlating material features with TC, we provide direct insight
into what features dictate amorphization resistance.

■ METHODOLOGY
Density Functional Theory. Density functional theory

(DFT) calculations were performed using the all-electron
projector augmented wave method22 within the generalized
gradient approximation (PBE) with the VASP code.23 A plane-
wave cutoff of 400 eV and dense k-point meshes were used to
ensure convergence. The lattice parameters and all atomic
positions were allowed to relax, though the cells were
constrained to be cubic. The disordered fluorite structure was
modeled using the special quasirandom structures (SQS)
approach.24 The SQS structures were generated as described in
ref 25. The amorphous structures were created by performing
ab initio molecular dynamics at a very high temperature and
then quenching the structures to 0 K. For the B = Zr and Hf
families, there is a deviation from true monotonic behavior at A
= Tb, in contrast with previous DFT calculations25 that used
the same methodology (pseudopotentials, functional, k-point
mesh, and energy cutoff). We assume that the differences from
previously published results are due to changes in different
versions of VASP. Finally, we use the so-called “f-in-core”
approach for the 3+ A cations, in which the f electrons are not
treated explicitly but are placed in the core of the
pseudopotential. Thus, while experimental data for TC exists
for Yb2Ti2O7, we do not consider it here as such
pseudopotentials do not exist for Yb in VASP.

Machine Learning Model. We used Kernel ridge
regression (KRR) with a Gaussian kernel for machine learning,
using the Scikit-learn machine learning suite.26 KRR is a
similarity-based learning algorithm, which has recently been
very successful for a range of materials property prediction
problems. Some recent applications of this approach to
materials problems include predictions of the properties of
molecular27,28 and periodic systems,29,30 development of
adaptive force fields,31,32 crystal structure classification,33

dielectric breakdown strength prediction,34,35 self-consistent

Figure 1. Experimentally measured values of TC, ordered as a function
of A cation radius, for several different pyrochlores. All of these values
of TC were obtained for 1 MeV Kr irradiations. Compounds for which
amorphization has not been observed are plotted here as having TC =
0 K. Data from refs 12−16.
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solutions for quantum mechanics,36 and predictions of
bandgaps.37 The treatment in this paper is, to the best of our
knowledge, one of the first, along with ref 38, that uses machine
learning to analyze a small experimental data set to build a
predictive model.
Feature standardization was carried out by rescaling each

individual feature such that it has a zero mean and unit variance
before building the KRR model. Within KRR, the ML estimate
of a target property (in our case the critical temperature TC) of
a new system j is estimated by a sum of weighted kernel
functions (i.e., Gaussians) over the entire training set, as

∑
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validation loop. The explicit solution to this minimization
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2 are the kernel matrix elements of all

materials in the training set. The parameters λ and σ are
determined in an inner loop of 5-fold cross-validation using a
logarithmically scaled fine grid.

■ RESULTS
DFT Energetics. Figure 2a provides the energetics for

disorder and amorphization of a given pyrochlore, as found
using DFT, as a function of the chemistry of the pyrochlore.
These are ordered by A cation radius. Focusing first on the
energetics to disorder, there is a general trend that as the A
cation radius increases, the energy associated with disordering
the pyrochlore to a disordered fluorite also increases, consistent
with previous results using DFT.25 This is particularly true of
the B = Zr, Hf, and Sn families of pyrochlores. For the B = Ti
family, there is a peak in the disorder energy near the A = Gd
composition, again consistent with previous DFT and empirical
potential calculations.19,25

Figure 2a highlights the apparent contradiction between
experimental observations and the notion that the disordering
energy correlates with amorphization resistance. If only
disordering energetics dictated the response of the pyrochlore
to irradiation, then one would expect that Zr pyrochlores would
generally exhibit higher amorphization resistance than Ti
pyrochlores (which they do) but also that Sn pyrochlores
would be less resistant to amorphization than Ti pyrochlores,
which they are not. Thus, other factors must also be important.
We propose that the energy of the amorphous phase is one of
those factors.
The energy differences between ordered pyrochlore and an

amorphous structure are also provided in Figure 2a. In the case
of the B = Hf and Zr families, these are again relatively
monotonic with increasing A cation radius. However, the
behaviors of the B = Ti and Sn families are more complex. In
particular, for the B = Ti family, the amorphous energy is
nonmonotonic with A cation radius, but the peak is for a
different chemistry than was the disordering energy. In the B =

Ti family, the amorphous energy is greatest for A = Y and
generally is high for A = Dy and Tb. The B = Sn family exhibits
even more complicated behavior. There is a peak in the
amorphous energy for A = Gd and a minimum for A = Ho.
Finally, the shaded regions in Figure 2a highlight the energy

gap between the disordered and amorphous states. The
variation of this gap with A cation radius is very different for
the different families of pyrochlores. For the B = Zr and Hf
pyrochlores, the gap slowly but steadily decreases with A cation
radius. For the B = Ti pyrochlores, the gap first increases
slightly and then decreases to essentially zero for the A = Nd
chemistry. The gap for the B = Sn pyrochlores first decreases,
then increases, and then decreases again. Further, the gap is
smallest for the B = Ti pyrochlores and, overall, largest for the
B = Zr and Sn pyrochlores, at least for some A chemistries.
Figure 2b provides the volume changes between the ordered

phase and both the disordered and amorphous phases, as
determined from the DFT calculations. For nearly all of the
cases, a transformation from the ordered to disordered phase
results in a volume expansion while the formation of the
amorphous phase contracts the lattice. The exceptions are the B
= Zr and Hf pyrochlores with small A cations, which exhibit
very little change in volume upon disordering. On the other
hand, Nd2Ti2O7 (assumed to be cubic here), Y2Sn2O7, and
Ho2Sn2O7 exhibit very little change upon amorphization.

Figure 2. DFT results for the (a) energetics and (b) volume changes
associated with an order-to-disorder (O → D, open symbols) and an
order-to-amorphous (O → A, closed symbols) transformation for four
families of pyrochlores in which B = Ti (green), Zr (purple), Hf
(yellow), and Sn (cyan). The shaded regions highlight the differences
between the disordered and amorphous structures.
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Correlation of Features with Amorphization Resist-
ance. The DFT results reveal that there are significant
differences in the energetics of disorder and amorphization in
pyrochlores as a function of both A and B chemistry. We use a
machine learning approach to quantify the correlations between
these energetics, as well as other features associated with
pyrochlores, and the amorphization resistance, as characterized
by TC. The features considered here are rA/rB, the ratio of the
ionic radii of the A and B cations; ΔX = XB − XA, the difference
in electronegativity of the A and B neutral metal atoms (XA and
XB, respectively); x, the oxygen positional parameter, which
measures the deviation of the oxygen sublattice from an ideal
(fluorite-like) simple cubic sublattice; EO→D, the energy
difference between the disordered and ordered phases; and
ED→A, the energy difference between the amorphous and
disordered phases. All of the values used are summarized in
Table S1 in the Supporting Information. These features were
chosen because (a) they have been shown to correlate to some
degree in previous studies and (b) our DFT results indicate
that the energetics depend strongly on the A and B chemistry
of the pyrochlore, suggesting they may provide a strong
descriptor of each compound. We also considered the enthalpy
of formation, proposed by other authors as a factor in radiation
tolerance,6,18 calculated here with DFT, but found that it did
not lead to any improvement in the description of TC or any
change in the conclusions reached here, and so is not discussed
further here.
However, before we examine the results of the machine

learning model, it is instructive to examine how the selected
features correlate with TC. Figure 3 provides simple plots of
each feature against TC. The values for TC, summarized in
Table 1, are taken from refs 12−16. For all of these values of
TC, the irradiations were performed with 1 MeV Kr ions under
the same conditions at the same facility. Figure 3 reveals that
while there are rough correlations between TC and some of the
features, there is not one feature that provides a quantitative
capability of predicting TC (a result that will be quantified
below). For example, overall, rA/rB correlates well with TC over
a wide range of B chemistries; however, it does not capture
subtleties associated with variations in TC with a given family of
pyrochlores. ΔX, on the other hand, discriminates between
pyrochlores with B = Sn and the other families but does not
correlate directly with TC. Similarly, x shows an overall
correlation with TC, but again, the details are lost. EO→D, on
the other hand, seems to correlate reasonably well for
pyrochlores within a given family but does not describe

variations of TC between families. Finally, ED→A, similar to x
and ΔX, seems to generally correlate separately for B = Sn
pyrochlores and the other families of pyrochlores. Thus, while
there are rough trends indicating some insight from each of
these features, there is certainly not enough of a correlation in
any case for a quantitative prediction. However, this suggests, as
noted by other authors,8 that combinations of these features

Figure 3. Correlations between experimental measurements of TC and 5 features describing pyrochlores. (a) x, the oxygen positional parameter (x =
0.375 for perfect fluorite). (b) rA/rB, the ratio of cation radii. (c) EO→D, the energy difference between disordered fluorite and ordered pyrochlore.
(d) ED→A, the energy difference between an amorphous structure and disordered fluorite. (e) ΔX, the difference in electronegativity between the A
and B cation. The different symbols in the figures indicate the nature of the B cation (■ = Zr, ● = Ti, ◆ = Sn, ▲ = Hf).

Table 1. Values of TC Used in the Machine Learning Modela

compd TC (K) error (K) ref

Sm2Ti2O7 1045 n/a 12
Eu2Ti2O7 1080 n/a 12
Gd2Ti2O7 1120 n/a 12
Tb2Ti2O7 970 n/a 12
Dy2Ti2O7 910 n/a 12
Y2Ti2O7* 780 n/a 12
Y2Ti2O7* 665 33 15
Ho2Ti2O7 850 n/a 12
Er2Ti2O7 804 n/a 12
Lu2Ti2O7 480 n/a 12
La2Zr2O7† 339 49 13
La2Zr2O7† 310 n/a 12
Nd2Zr2O7 <25 n/a 12
Sm2Zr2O7 <25 n/a 12
Gd2Zr2O7 <25 n/a 12
La2Hf2O7 563 22 13
La2Sn2O7 1025 n/a 12
Nd2Sn2O7 850 n/a 12
Gd2Sn2O7 350 n/a 12
Dy2Sn2O7 <25 n/a 12
Ho2Sn2O7 <25 n/a 12
Y2Sn2O7 <25 n/a 12
Y2Sn2O7 <50 n/a 14
Er2Sn2O7 <25 n/a 12

aAs reported by the corresponding references. The corresponding
irradiation conditions were 1 MeV Kr in all cases. In the case of
Y2Ti2O7 (*), as there were two significantly different values in the
literature, we took an average value of TC: 723 K. In the case of
La2Zr2O7 (†), there were also two literature values, but as one was
within the error bars of the other, we simply took TC = 310 K for this
compound. The error bars were not used in the machine learning
model as, owing to the limited data, ML models never reached
accuracies where the error bars were relevant. For those compounds
where no TC was measured (i.e., TC < 25 K), we simply used a value of
TC = 12.5 K for numerical reasons.
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may provide predictive capability. Hence, we use a machine
learning approach to quantify this.
Results of the Machine Learning Model. We use a

machine learning (ML) approach to quantify the correlations
between the five features described in the previous section and
TC. More specifically, we employed kernel ridge regression
(KRR),39−41 an algorithm that works on the principle of
similarity and is capable of extracting complex nonlinear
relationships from data in an efficient manner, with a Gaussian
kernel to learn and quantify trends exhibited by TC in the
feature space discussed above. A randomly selected 90%/10%
training/test split of the available data was used for statistical
learning and testing the performance of the trained model on
previously unseen data. A leave-one-out cross-validation is used
to determine the model hyperparameters to avoid any
overfitting of the training data that may lead to poor
generalizability. The trained model can subsequently be used
to make an interpolative prediction of TC for a new material
(i.e., not used in the model training) i by comparing its distance
in feature space di (suitably defined by a distance measure; in
our case the Euclidean norm was used) with those of a set of
reference training cases for which the TC values are known.
Further details of our KRR-based ML models are provided in
the Methodology section.
Next, within the KRR ML model, we aim to identify the best

feature combination that exhibits the highest prediction
performance, quantified by its ability to accurately predict TC
of the test set compounds. We do this in a comprehensive
manner by building KRR ML models using all possible
combinations of Ω features with Ω ∈ [2, 5]. Performance of
each of these models was evaluated separately on the entire

data set as well as on a reduced set that only included the Ti
pyrochlores. The root-mean-square errors (RMSEs) for the TC
predictions on training and test sets for various models are
presented in Figure 4. In order to account for model prediction
variability associated with randomly selected training/test splits,
Figure 4 reports the RMSEs averaged over 100 different
randomly selected training/test splits for each of the models.
The average of the RMSE on the test set quantifies the
predictive capability of the model and thus is used to identify
the features that best describe the experimental data.
Figure 4 provides the results of the machine learning model

when different dimensionalities of feature sets are considered
both for a database containing all of the pyrochlores from Table
1 and a database containing only the titanates (B = Ti). We first
consider the results of using only one feature to train the
model. As discussed above in the context of Figure 3, in the
case of the full data set, none of the models based on one
feature alone perform particularly well. The best correlation is
found for rA/rB, but even there the error is nearly 150 K. If only
the titanates are considered, the best performing feature is
EO→D, which has an error of less than 125 K (indicated as a “★”
in Figure 4b). This indicates that the disordering energetics do
correlate well with the observed values of TC.
The 2D models that lead to the lowest RMSEs on the test set

data have been marked with a “★” in Figure 4a (when taking
the entire data) and Figure 4b (for the Ti pyrochlores). It is
interesting to note that, for both cases, going beyond the best
performing 2D models does not lead to a significant
improvement in the model prediction performance. For
instance, while the best binary feature pair (rA/rB, ΔX) leads
to a test set RMSE of 101.2 K in TC, the ML models built on

Figure 4. Results from the machine learning model. (a) Results when applied to the entire set of pyrochlores and (b) results when applied only to
the titanate family. The solid bars indicate the average RMS error for the training data while the hashed bars indicate the error for the test data. The
indices on the abscissa indicate the features used in that particular model. Models including 1, 2, 3, 4, or all 5 features were considered. The best 2D
feature set is indicated with the star for both cases. Error bars represent the standard deviations for the RMSE in predict TC, computed over the 100
different training/test set splits.

Chemistry of Materials Article

DOI: 10.1021/acs.chemmater.6b04666
Chem. Mater. 2017, 29, 2574−2583

2578

http://dx.doi.org/10.1021/acs.chemmater.6b04666


the best 4D and 5D (taking all 5 features considered) feature
vectors only result in nominal improvements leading to RMSEs
of 98.3 and 95.9 K, respectively. Since, as a general rule, higher
model complexity often leads to poor generalizability, in the
case of a comparable prediction performance, a simpler model
(i.e., built on a lower dimensional feature set) should always be
preferred over a more complex one. Therefore, henceforth we
focus our attention on the best performing 2D models.
The superior performance exhibited by the (rA/rB, ΔX)

feature pair is not entirely unexpected and can be understood
by looking at Figure 3b,e. As alluded to previously, while rA/rB
helps capture the overall TC trends among different chemistries,
ΔX allows for an effective separation between different
chemistries (especially, between the Sn-based compounds and
rest of the data set), while still capturing relative TC trends
between these subgroups. The best performing feature pair for
the titanate pyrochlores data set, however, is constituted by rA/
rB and ED→A. Further, the best feature pair for the full data set,
(rA/rB, ΔX), performs much more poorly on this subset,
indicating that more physics is needed to describe the more
strongly related compounds within a given B cation family. We
note that if the analysis is limited to just the B = Sn family, the
best 2D feature pair remains (rA/rB, ΔX).
While Figure 4 captures the average performance and

variability (taken over 100 different runs) for our best
performing 2D models (marked with a ★), in Figure 5a,b we

present parity plots comparing the experimental TC with the
ML predictions using the best 2D descriptors found for the
entire data set (Figure 5a) and the titanates (Figure 5b),
respectively. In each case ∼90% of the data set was used for
training (plotted as ■) with the remaining for testing the
model performance (plotted as ●). In each case, we used four
different ML runs randomly selecting training and test set splits

(depicted by different colors). It can be seen from the parity
plots that our ML models can reasonably predict (within the
error bars established in Figure 4) TC over the entire data set. A
couple of conclusions can be drawn from these plots. First,
visually it can be seen that the model prediction performance is
comparable for the training and test sets, indicating that there is
no overfitting (a problem when a ML model performs very well
on a training set but exhibits a poor performance on a test set).
Second, despite their simplicity (given that we are only using a
two-dimensional feature in each case), the ML models exhibit
good predictive power and stability (predictions do not change
drastically over different training/test splits). This highlights the
robustness of the model.
To gain a deeper insight into the KRR model’s prediction

performance, we next construct contour plots for each of the
two best performing 2D feature pairs discussed above. In each
case, we start with a fine 2D grid in the feature space
constituted by the primary features identified above, while still
confining ourselves within the boundaries of the original feature
space used to train the KRR models. Each point on this grid
then, in principle, represents a point in the feature space, which
can be used as an input for the respective trained KRR models
to make predictions. That is, we map out the predicted value of
TC as a function of the two features over a range of values for
each of the two features. Since the ML models are interpolative,
one can readily use a fine grid in the 2D feature space to
visualize trends in TC versus the feature values and make
predictions of TC for new chemistries.
Figure 5c shows the best two-feature descriptor for the entire

set of pyrochlores considered. Again, in this case, the two
features that best correlate with TC are rA/rB and ΔX. This
combination of features is able to distinguish the different TC
behavior exhibited by the B = Sn pyrochlores and the other
families of pyrochlores, by virtue of the properties of ΔX. In
principle, the types of maps provided in Figure 5 could be used
to predict TC for chemistries of pyrochlores not included in
Table 1. However, care must be taken as machine learning
models are inherently interpolative in nature. Still, Figure 5c
indicates that small rA/rB and small electronegativity differences
between the A and B cations will maximize amorphization
resistance (minimize TC). Similarly, as shown in Figure 5d,
minimizing rA/rB and maximizing ED→A will also minimize TC.
However, as discussed above, this combination of features

has an effective uncertainty of ∼100 K, indicating that it cannot
describe the fine features exhibited by the B = Ti family of
pyrochlores. For example, TC is not monotonic with A cation
radius (see Figure 1). As discussed, limiting the model to just
the B = Ti pyrochlores results in a different optimal two-feature
set, namely, rA/rB and ED→A, as shown in Figure 4b. In
particular, as shown in Figure 5d, this set of features can
describe the subtle behavior in which the A = Gd compound
has the highest value of TC, correlating with the fact that it has a
relatively small value of ED→A, while the A = Y compound,
which has a value of EO→D similar to the neighboring
compounds (see Figure 2a), exhibits an anomalously low
value of TC. This is a consequence of its rather high value of
ED→A, a consequence of the fact that Y is not a rare earth, and
thus, the bonding associated with it is subtly different to the
other elements around it.

■ DISCUSSION AND CONCLUSIONS
Combining experimental results for TC for various pyrochlore
compounds, DFT calculations of the energetics of disordering

Figure 5. (a, b) Parity plots of the machine learning results for (a) the
entire set of pyrochlores and (b) the titanate family. The squares
represent training data while the circles are the test set. The different
colors represent different runs with different training/test set splits. (c,
d) Results from the machine learning model for (c) all of the
pyrochlores considered and (d) just the titanate famliy. The size and
color of the circles indicate the experimental TC while the position of
the circles indicates the predicted TC. The contours indicate
predictions of TC for other values of the feature pairs.
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and amorphization, and a machine learning model, we conclude
that (a) basic ionic properties such as rA/rB and ΔX have the
qualitative capability of predicting trends in TC over a wide
range of pyrochlore compounds but that (b) more quantitative
predictions that capture the subtleties associated with variations
in A cation chemistry require knowledge of both the
disordering and amorphization energetics. This generalizes
the previous understanding in which rough correlations
between amorphization resistance and, for example, disordering
energetics were hypothesized on the basis of a few observations.
However, what is clear from the machine learning analysis is

that, even with the input of DFT energetics, the predictive
capabilities are still limited. Even when limited to the B = Ti
family of pyrochlores, the optimal 2D model results in
predictive uncertainty of ∼100 K. This is a consequence of
many factors, including the limited amount of experimental
data, the uncertainties in the experimental data, and
uncertainties in the DFT calculations. To determine an even
better predictive model, more experimental data is required. In
particular, values of TC for other families of pyrochlores would
enhance the strength of the model. For example, without the B
= Sn pyrochlores, the importance of ΔX would likely not have
been revealed. Importantly, given the small data set, domain
knowledge, experience with the behavior of this system, was
important in narrowing down a set of likely relevant features.
Inspection of Figure 2 shows that the compound Eu2Ti2O7

does not quite follow the same trends in amorphization and
disordering energies as its neighbors. In particular, it exhibits a
very small difference in these two energies. The calculations for
Eu used a different generation of pseudopotential than the
other Ln3+ species and, because of this, may exhibit different
behavior than the other Ln3+ compounds, which utilized an
older generation of pseudopotential. Thus, one might suspect
that the results for Eu2Ti2O7 are an outlier. To test this, we
redid the machine learning model on a database of titanates in
which Eu2Ti2O7 was not included; the results are presented in
Figure 6. In this case, the best performing feature set is EO→D
and ED→A. Further, its performance is significantly better than
the results of the model presented in Figure 4, with a predictive
capability of better than 75 K. Further, the predictive error of
the feature set that performed best on the full data set (rA/rB
and ΔX) is the worst performing feature set on this data set.
This highlights both the sensitivity of the model predictions
when based on such small sets of data and the qualitatively
different predictive capabilities of the approach depending on
what type of data is included in the model.
While the feature set of ΔX and rA/rB has the best predictive

capability for distinguishing between the various families of
pyrochlores, the reason why Sn pyrochlores are radiation
tolerant while exhibiting such high disordering energies is
found in examining the amorphization energetics. The gap
between the disordering and amorphization energies for the Sn
pyrochlores is typically quite large, and even if, during the
course of irradiation, enough energy is deposited into the lattice
such that the structure becomes disordered, it is not enough to
amorphize the material. The gap betwen the disordering and
amorphization energies is much larger in the Sn pyrochlores
than it is in the Ti family and, for some A cations, larger than
for the Hf and Zr families as well. Thus, the origin of the
radiation tolerance of some of the Sn pyrochlores comes from
the fact that they are extremely difficult to amorphize.
Importantly, by incorporating properties such as EO→D and
ED→A that are derived from electronic structure calculations,

information about bonding in different environments (e.g.,
ordered, disordered and amorphous) is naturally included in
the model. As noted, the behavior of the B = Sn pyrochlores is
counterintuitive as it is typically assumed that higher levels of
covalency leads to less amorphization resistance.20 While the
DFT results indicate that the energy to amorphize the Sn
pyrochlores is extremely high, that fact does not provide a more
fundamental explanation for this counterintuitive behavior. We
suspect that there is such a high exothermic thermodynamic
driving force to reorder that the barriers to recover from any
damage are relatively small, as implied by the Bell−Evans−
Polanyi principle42,43 and similar to the effects we found in
spinels.44 This suggests that, while structural rigidity in the
terms of strongly preferred coordination environments is
typically detrimental to radiation tolerance,20 extreme rigidity
in coordination may provide some benefit. Recent results found
that the amorphization resistance of Sn pyrochlores under swift
heavy ion irradiation conditions did not seem strongly
influenced by the covalency of the Sn−O bond.45 However,
our results suggests that this covalency, which does penalize
disordering processes, further penalizes the amorphization of
the Sn compounds, explaining the higher amorphization
resistance of these materials.
The insights gained by the machine learning model apply

specifically to pyrochlores and, because of the interpolative
nature of these models, to the families of pyrochlores
considered here. That said, the features identified as being
best able to predict TC can be justified physically and thus may
be applicable to other classes of complex oxides, such as δ-
phase,46 that have fluorite as the parent structure. However,
other classes of complex oxides, such as spinel, which have
fundamentally different crystal structures, may have different
dependencies on these features, or require new features to
predict behavior. In particular, structural vacancies on the
cation sublattice in spinel can facilitate recovery of damage in a
way that is not possible in pyrochlore.44 Further, other factors,

Figure 6. Results from the machine learning model on the titanate
pyrochlores when Eu2Ti2O7 is not included. Only results for 2D
feature sets are shown. The best performing feature set is indicated by
the star.
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such as short-range order, which is known to occur in complex
oxides,47,48 may also play a role. However, we suspect that
treating the disordered state as truly random captures much of
the behavior of these materials, given the ability of the
disordered fluorite structure to predict order−disorder temper-
atures in these systems.25,49

In this work, we have used TC as a metric for relative
amorphization resistance. In reality, the value of TC
encompasses not only thermodynamic properties such as
disordering and amorphization energetics, but also kinetic
processes of defect annihilation and defect production. Further,
TC depends on irradiation conditions,50 changing with ion
mass, energy, and flux. For example, Nd2Zr2O7 cannot be
amorphized via light ion irradiations but is easily amorphized
under irradiation with heavy ions.9,51 Also, while there is a clear
dependence of TC with chemistry under 1 MeV Kr irradiations
(Figure 1), irradiations with Bi and Au do not reveal such a
dependence.52,53 These observations further reinforce the fact
that TC is not an intrinsic property of a material, but is very
sensitive to the irradiation conditions. Thus, actually predicting
TC from fundamental defect behavior would be a daunting task,
as the computational materials modeling community cannot
predict the damage state induced by arbitrary irradiation
conditions nor the behavior of defects in pyrochlore as a
function of disorder (further, for quantitative predictions, these
quantities would need to be known at a DFT level). However,
TC does provide a metric to compare the susceptibility of
amorphization that has been measured for a range of
pyrochlore chemistries. In addition, while TC will change with
irradiation conditions, we expect that the general trends
exhibited between different pyrochlore chemistries will not. If
the trends were very sensitive to the irradiation conditions, then
correlations of TC with, e.g., disordering tendencies would not
exist, as even trends in TC would be dominated by external
factors. Finally, this work demonstrates an alternative route to
developing predictive models of fundamentally complicated
properties such as TC. In principle, with more experimental
data, irradiation conditions could be accounted for in the
machine learning model via parameters such as ion mass,
energy, and flux. While a machine learning model does not
provide the intuitive physical picture that a fundamental model
would, it does allow for predictions of systems where
developing a fundamental model is prohibitive.
Amorphization in materials such as pyrochlore is the result of

one of two mechanisms.21,54 Under light ion irradiation, defects
are produced and accumulate in the material. At some defect
concentration, the stored energy in the lattice is greater than
that of the amorphous phase, and the material succumbs to an
amorphization transformation. In some sense, this is similar to
walking up the temperature axis of the phase diagram for the
material, starting from a low temperature.7 Alternatively, under
heavy ion irradiation, the material is effectively melted at a local
level and then solidifies. This so-called direct impact
mechanism leads to direct amorphization within each damage
event or collision cascade and is similar to walking down the
temperature axis, starting from a very high temperature. These
are qualitatively different amorphization mechanisms. Note that
the dense cascades induced by the heavier ions are still within
the ballistic regime and are not within a regime described by
ionizing thermal spikes induced by swift heavy ions.55 Still,
dense cascades are characterized by a local thermal spike-like
process, as has been demonstrated by multiple molecular
dynamics simulations.56,57 The 1 MeV Kr irradiations

summarized in Figure 1 are representative of the defect
accumulation mechanism, particularly in the manner in which
they were performed, in which the ions went all the way
through the material. However, other irradiation conditions,
such as using heavier Bi or Au52,53 ions, are better described by
the direct impact mechanism and lead to qualitatively different
behavior. Our results apply only to irradiation conditions in
which amorphization proceeds via defect accumulation.
Returning to the nature of TC, we have used static properties

(the energetics of different pyrochlore structures and phases) to
analyze an inherently kinetic quantity. However, these are not
fully decoupled effects. As stated by the Bell−Evans−Polanyi
principle,42,43 the kinetics of a process is related to the
difference in enthalpy between the initial and final states. Thus,
there is, at least in a broad sense, a direct connection between
the differences in energetics between states and the kinetic
processes associated with them. In the case of pyrochlore, if the
energy of the amorphous phase is high, there will be a larger
driving force to recrystallize, and the kinetics associated with
recrystallization will thus be faster. While this argument does
not provide a quantitative link between the thermodynamics
and kinetics of the various phases of the material, it does
suggest that the two are not completely independent and that
these thermodynamic quantities can be used as a surrogate for
more complex (and unknown) kinetic quantities. Indeed, the
kinetic stability of cation interstitials has been linked to the
cation radii,58 further supporting this concept.
Finally, this work highlights the utility of machine learning

approaches in materials science. In this case, the ML model
elucidates those features which provide predictive capability,
providing insight into those factors which dictate amorphiza-
tion resistance in pyrochlores. The model also shows that sets
of two features result in optimal predictions; higher-order
feature sets do not add significant value. The fact that different
combinations of features prove optimal for describing the entire
set of pyrochlores (rA/rB and ΔX) versus the Ti family (rA/rB or
EO→D and ED→A) reinforces the point that the best set of
features depends on the level of detail (here, the error in the
predicted TC) required in the prediction.
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