10 research outputs found

    Grasslands and coastal habitats of Southern Ukraine : first results from the 15th EDGG Field Workshop

    Get PDF
    The 15th EDGG Field Workshop took place from 24 May to 3 June 2021 in Southern Ukraine (Kherson and Mykolaiv adminis-trative regions). Over 10 days, we sampled different types of grasslands, mainly focusing on dry grasslands of the classes Festuco-Brometea, Koelerio-Corynephoretea canescentis, and Festuco-Puccinellietea (steppic, sandy and saline, respectively) but also taking into account other open habitats, such as mesic grasslands and dunes. In total, we sampled 50 nested-plot series with 7–8 grain sizes from 1 cm2 to 100 m2 and, in some cases, up to 1000 m2 (“EDGG Biodiversity Plots”), plus 74 additional normal plots of 10 m2 . We comprehen-sively sampled vascular plants as well as terricolous bryophytes and lichens, and, for the first time also Sciaridae (Diptera, Insecta). One vascular plant species (Torilis pseudonodosa), as well as two lichen species (Cladonia conista and Endocarpon loscosii), were recorded for the first time from Ukraine. Two species of moss (Rhynchostegium megapolitanum and Ptychostomum torquescens) and three species of lichen (Cladonia cervicornis, C. symphycarpa, and Involucropyrenium breussi) were reported for the first time for the Kherson region. We summarize the scale-dependent richness values and compare them with those from other studies. The report concludes with a photo diary with impressions from the Field Workshop

    GrassPlot v. 2.00 – first update on the database of multi-scale plant diversity in Palaearctic grasslands

    Get PDF
    Abstract: GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). Following a previous Long Database Report (Dengler et al. 2018, Phyto- coenologia 48, 331–347), we provide here the first update on content and functionality of GrassPlot. The current version (GrassPlot v. 2.00) contains a total of 190,673 plots of different grain sizes across 28,171 independent plots, with 4,654 nested-plot series including at least four grain sizes. The database has improved its content as well as its functionality, including addition and harmonization of header data (land use, information on nestedness, structure and ecology) and preparation of species composition data. Currently, GrassPlot data are intensively used for broad-scale analyses of different aspects of alpha and beta diversity in grassland ecosystems

    Eastern European Steppe Database

    No full text
    The Eastern European Steppe Database (GIVD ID EU-00-030) includes 6961 vegetation plots of dry grassland vegetation from Eastern Europe (Steppe and Forest-Steppe zones, mountain regions), mainly from Ukraine (4579 relevés), Russia (2403 relevés) and Moldova (203 relevés). 3912 vegetation plots are from different literature sources (66 sources), 219 are from the phytosociological card-index of the M.G. Kholodny Institute of Botany, NAS of Ukraine, 2830 relevés are authors’ relevés. They were established in 1935-2019 years. The database comprises mainly the vegetation of the class Festuco-Brometea (around 95% of the dataset), and a small proportion of Koelerio-Corynephoretea canescentis, Artemisietea vulgaris, Crataego-Prunetea. The taxonomy of vascular species is given according to Cherepanov (1995) for vascular plants, Ignatov and Afonina (1992) for bryophytes and identification guides of the USSR (1971–1978) and Russia (1996, 1998) for lichens. The database is part of the European Vegetation Archive

    GrassPlot v. 2.00 – first update on the database of multi-scale plant diversity in Palaearctic grasslands

    No full text

    GrassPlot v. 2.00 : first update on the database of multi-scale plant diversity in Palaearctic grasslands

    No full text

    Benchmarking plant diversity of Palaearctic grasslands and other open habitats

    No full text
    Aims: Understanding fine-grain diversity patterns across large spatial extents is fundamental for macroecological research and biodiversity conservation. Using the GrassPlot database, we provide benchmarks of fine-grain richness values of Palaearctic open habitats for vascular plants, bryophytes, lichens and complete vegetation (i.e., the sum of the former three groups). Location: Palaearctic biogeographic realm. Methods: We used 126,524 plots of eight standard grain sizes from the GrassPlot database: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 and 1,000 m(2) and calculated the mean richness and standard deviations, as well as maximum, minimum, median, and first and third quartiles for each combination of grain size, taxonomic group, biome, region, vegetation type and phytosociological class. Results: Patterns of plant diversity in vegetation types and biomes differ across grain sizes and taxonomic groups. Overall, secondary (mostly semi-natural) grasslands and natural grasslands are the richest vegetation type. The open-access file "GrassPlot Diversity Benchmarks" and the web tool "GrassPlot Diversity Explorer" are now available online () and provide more insights into species richness patterns in the Palaearctic open habitats. Conclusions: The GrassPlot Diversity Benchmarks provide high-quality data on species richness in open habitat types across the Palaearctic. These benchmark data can be used in vegetation ecology, macroecology, biodiversity conservation and data quality checking. While the amount of data in the underlying GrassPlot database and their spatial coverage are smaller than in other extensive vegetation-plot databases, species recordings in GrassPlot are on average more complete, making it a valuable complementary data source in macroecology

    Benchmarking plant diversity of Palaearctic grasslands and other open habitats

    No full text
    Aims Understanding fine-grain diversity patterns across large spatial extents is fundamental for macroecological research and biodiversity conservation. Using the GrassPlot database, we provide benchmarks of fine-grain richness values of Palaearctic open habitats for vascular plants, bryophytes, lichens and complete vegetation (i.e., the sum of the former three groups). Location Palaearctic biogeographic realm. Methods We used 126,524 plots of eight standard grain sizes from the GrassPlot database: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 and 1,000 m2 and calculated the mean richness and standard deviations, as well as maximum, minimum, median, and first and third quartiles for each combination of grain size, taxonomic group, biome, region, vegetation type and phytosociological class. Results Patterns of plant diversity in vegetation types and biomes differ across grain sizes and taxonomic groups. Overall, secondary (mostly semi-natural) grasslands and natural grasslands are the richest vegetation type. The open-access file ”GrassPlot Diversity Benchmarks” and the web tool “GrassPlot Diversity Explorer” are now available online (https://edgg.org/databases/GrasslandDiversityExplorer) and provide more insights into species richness patterns in the Palaearctic open habitats. Conclusions The GrassPlot Diversity Benchmarks provide high-quality data on species richness in open habitat types across the Palaearctic. These benchmark data can be used in vegetation ecology, macroecology, biodiversity conservation and data quality checking. While the amount of data in the underlying GrassPlot database and their spatial coverage are smaller than in other extensive vegetation-plot databases, species recordings in GrassPlot are on average more complete, making it a valuable complementary data source in macroecology

    Benchmarking plant diversity of Palaearctic grasslands and other open habitats

    No full text
    Abstract Aims: Understanding fine-grain diversity patterns across large spatial extents is fundamental for macroecological research and biodiversity conservation. Using the GrassPlot database, we provide benchmarks of fine-grain richness values of Palaearctic open habitats for vascular plants, bryophytes, lichens and complete vegetation (i.e., the sum of the former three groups). Location: Palaearctic biogeographic realm. Methods: We used 126,524 plots of eight standard grain sizes from the GrassPlot database: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 and 1,000 m² and calculated the mean richness and standard deviations, as well as maximum, minimum, median, and first and third quartiles for each combination of grain size, taxonomic group, biome, region, vegetation type and phytosociological class. Results: Patterns of plant diversity in vegetation types and biomes differ across grain sizes and taxonomic groups. Overall, secondary (mostly semi-natural) grasslands and natural grasslands are the richest vegetation type. The open-access file ”GrassPlot Diversity Benchmarks” and the web tool “GrassPlot Diversity Explorer” are now available online (https://edgg.org/databases/GrasslandDiversityExplorer) and provide more insights into species richness patterns in the Palaearctic open habitats. Conclusions: The GrassPlot Diversity Benchmarks provide high-quality data on species richness in open habitat types across the Palaearctic. These benchmark data can be used in vegetation ecology, macroecology, biodiversity conservation and data quality checking. While the amount of data in the underlying GrassPlot database and their spatial coverage are smaller than in other extensive vegetation-plot databases, species recordings in GrassPlot are on average more complete, making it a valuable complementary data source in macroecology
    corecore