3,054 research outputs found

    頭部構造と各層内血流変化が光マッピング画像に及ぼす影響

    Get PDF
    Optical mapping has been applied to image brain activation two-dimensionally along the head surface by detecting the intensity changes of light that passes through the brain. In optical mapping for imaging brain activity, it is assumed that the head tissue is spatially homogeneous and temporally invariable except the activated region in the brain. However, in the superficial layers above the brain, the tissues are inhomogeneous and vary hemodynamically. Furthermore, light propagation and the optical pathlength inside the head are highly dependent on the anatomy and physiology in the head. In particular, the spatial variations in the thickness of skull and cerebrospinal fluid (CSF) layers, the existence of the blood vessels and the hemodynamic changes in the superficial layers such as the CSF and skin layers would have significant influences on light propagation and would result in the difference in the mapping images. However, itis difficult to know these influences by in vivo experiments. The aim of this study is to investigate these influences by numerical and experimental methods. Three-dimensional head models are used to simulate light propagation in the head by solving the photon diffusion equation using the finite element method (FEM), and the optical mapping images are constructed from the simulated measurement data. Tissue-mimicking phantoms with spatially varying thickness and changeable optical properties of head layers were also developed and multi-channel near-infrared spectroscopy (NIRS) experiments were performed on the dynamic phantoms. In the numerical simulations and phantom experiments, the changes in the optical densities (ΔOD) due to activated regions are obtained to construct the mapping images, and the light path probability distributions between one pair of source and detector are calculated to show the sensitivity of the tissue regions to the mapping images. As theresults, the influences of (1) the spatial variations of the skull and CSF layers and (2) the blood volume changes in the skin and CSF layers on the mapping images of brain activities are investigated quantitatively. The optical mapping for the single or multiple activated regions and the effects of the position of the activated regions relative to theprobe arrays on mapping images are also discussed. The quantitative results about the influences of the superficial layers in this study provide information for compensating the optical mapping images among different individuals or different head regions in an individual. In vivo experiments considering the influences of structural and hemodynamic differences in the superficial layers onoptical mapping remain as a future subject.電気通信大学201

    The Study on Cracking Strength of AIJs to Release the Early-Age Stress of Mass Concrete

    Get PDF
    This paper aims to theoretically and numerically assess the effect of setting artificial-induced joints (AIJs) during construction period of amass concrete structure to release the early-stage thermal stress. With respect to the coupling influences of various factors such as size and boundary of AIJs, an analytical model for its cracking strength on the setting section of mass concrete is proposed based on double-parameter fracture theory. A kind of hyper-finite element analysis (FEA) for many array AIJs in simplified plane pate is also presented by using bilinear cohesive force distribution. The results from the present model and numerical simulation were compared to those of experimental data to prove the efficiency and accuracy of the analytical model and FEA. The model presented in this study for the cracking strength of AIJs provides a simple useful tool to accurately evaluate how many early stress AIJs reduced. The theoretical solution and FEA results could also be significantly contributed to find the "just" and "perfect" release of the temperature stress and to improve the design level of AIJs in mass concrete structure

    Mitochondria-Localized Glutamic Acid-Rich Protein (MGARP) Gene Transcription Is Regulated by Sp1

    Get PDF
    Background: Mitochondria-localized glutamic acid-rich protein (MGARP) is a novel mitochondrial transmembrane protein expressed mainly in steroidogenic tissues and in the visual system. Previous studies showed that MGARP functions in hormone biosynthesis and its expression is modulated by the HPG axis. Methodology/principal findings: By bioinformatics, we identified two characteristic GC-rich motifs that are located proximal to the transcription start site (TSS) of MGARP, and each contains two Specificity protein 1 (Sp1) binding elements. We then determined that the −3 kb proximal MGARP promoter is activated in a Sp1-dependent manner using reporter assays and knockdown of Sp1 led to decreased expression of endogenous MGARP messages. We also demonstrated that one of the two GC-rich motifs, GC-Box1, harbors prominent promoter activity mediated by Sp1, and that it requires both GC boxes for full transcriptional activation. These findings suggest a dominant role for these GC boxes and Sp1 in activating the MGARP promoter through a synergistic mechanism. Consistently, the results of an Electrophoretic Mobility Gel Shift Assay (EMSA) and Chromatin Immunoprecipitation (ChIP) confirmed that Sp1 specifically interacts with the GC-rich region. We further found that estrogen receptor α (ERα), a known Sp1 co-activator, could potentiate GC-boxes containing MGARP promoter activity and this effect is mediated by Sp1. Knockdown of Sp1 significantly diminished the MGARP promoter transactivation and the expression of endogenous MGARP mediated by both Sp1 and ERα. Conclusions/significance: The present study identified a proximal core sequence in the MGARP promoter that is composed of two enriched Sp1 binding motifs and established Sp1 as one major MGARP transactivator whose functions are synergistic with ERα, providing a novel understanding of the mechanisms of MGARP gene transcriptional regulation

    Prediction of peptide drift time in ion mobility mass spectrometry from sequence-based features

    Get PDF
    BACKGROUND: Ion mobility-mass spectrometry (IMMS), an analytical technique which combines the features of ion mobility spectrometry (IMS) and mass spectrometry (MS), can rapidly separates ions on a millisecond time-scale. IMMS becomes a powerful tool to analyzing complex mixtures, especially for the analysis of peptides in proteomics. The high-throughput nature of this technique provides a challenge for the identification of peptides in complex biological samples. As an important parameter, peptide drift time can be used for enhancing downstream data analysis in IMMS-based proteomics. RESULTS: In this paper, a model is presented based on least square support vectors regression (LS-SVR) method to predict peptide ion drift time in IMMS from the sequence-based features of peptide. Four descriptors were extracted from peptide sequence to represent peptide ions by a 34-component vector. The parameters of LS-SVR were selected by a grid searching strategy, and a 10-fold cross-validation approach was employed for the model training and testing. Our proposed method was tested on three datasets with different charge states. The high prediction performance achieve demonstrate the effectiveness and efficiency of the prediction model. CONCLUSIONS: Our proposed LS-SVR model can predict peptide drift time from sequence information in relative high prediction accuracy by a test on a dataset of 595 peptides. This work can enhance the confidence of protein identification by combining with current protein searching techniques

    Structural characterization of an α-1, 6-linked galactomannan from natural Cordyceps 2 sinensis

    Get PDF
    An α-1, 6-linked galactomannan was isolated and purified from natural Cordyceps sinensis. The fine structure analysis of this polysaccharide was elucidated based on partial acid hydrolysis, monosaccharide composition, methylation and 1D/2D nuclear magnetic resonance (NMR) spectroscopy. Monosaccharide composition analysis revealed that this polysaccharide was mainly composed of galactose (68.65%), glucose (6.65%) and mannose (24.02%). However, after partial acid hydrolysis the percentages of galactose, glucose and mannose were changed to 3.96%, 13.82% and 82.22%, respectively. The molecular weight of this polysaccharide was 7207. Methylation and NMR analysis revealed that this galactomannan had a highly branched structure, mainly consisted of a mannan skeleton and galactofuranosyl chains. The structure of galactofuranosyl part was formed by alternating (1 → 5)-lined β-Galf and (1 → 6)-liked β-Galf or a single (1 → 6)-liked β-Galf, attaching to the O-2 and O-4 of the mannose chain, and terminated at β-T-Galf. The mannan core was revealed by analyzing the partial acid hydrolysate of the galactomannan and the structure was composed of (1 → 6)-linked α-Manp backbone, with substituted at C-2 by short chains of 2-substituted Manp or Galf branches

    A 3D view of the outflow in the Orion Molecular Cloud 1 (OMC-1)

    Full text link
    The fast outflow emerging from a region associated with massive star formation in the Orion Molecular Cloud 1 (OMC-1), located behind the Orion Nebula, appears to have been set in motion by an explosive event. Here we study the structure and dynamics of outflows in OMC-1. We combine radial velocity and proper motion data for near-IR emission of molecular hydrogen to obtain the first 3-dimensional (3D) structure of the OMC-1 outflow. Our work illustrates a new diagnostic tool for studies of star formation that will be exploited in the near future with the advent of high spatial resolution spectro-imaging in particular with data from the Atacama Large Millimeter Array (ALMA). We use published radial and proper motion velocities obtained from the shock-excited vibrational emission in the H2 v=1-0 S(1) line at 2.122 μ\mum obtained with the GriF instrument on the Canada-France-Hawaii Telescope, the Apache Point Observatory, the Anglo-Australian Observatory and the Subaru Telescope. These data give the 3D velocity of ejecta yielding a 3D reconstruction of the outflows. This allows one to view the material from different vantage points in space giving considerable insight into the geometry. Our analysis indicates that the ejection occurred <720 years ago from a distorted ring-like structure of ~15" (6000 AU) in diameter centered on the proposed point of close encounter of the stars BN, source I and maybe also source n. We propose a simple model involving curvature of shock trajectories in magnetic fields through which the origin of the explosion and the centre defined by extrapolated proper motions of BN, I and n may be brought into spatial coincidence.Comment: Accepted for publication in Astronomy and Astrophysics (A&A), 12 pages, 9 figure

    Facile synthesis of composition-tuned ZnO/Zn x Cd1-xSe nanowires for photovoltaic applications

    Get PDF
    Abstract ZnO/Zn x Cd1-x Se coaxial nanowires (NWs) have been successfully synthesized by combining chemical vapor deposition with a facile alternant physical deposition method. The shell composition x can be precisely tuned in the whole region (0 ≤ x ≤ 1) by adjusting growth time ratio of ZnSe to CdSe. As a result, the effective bandgaps of coaxial nanowires were conveniently modified from 1.85 eV to 2.58 eV, almost covering the entire visible spectrum. It was also found that annealing treatment was in favor of forming the mixed crystal and improving crystal quality. An optimal temperature of 350°C was obtained according to our experimental results. Additionally, time resolved photo-luminescence spectra revealed the longest carrier lifetime in ZnO/CdSe coaxial nanowires. As a result, the ZnO/CdSe nanowire cell acquired the maximal conversion efficiency of 2.01%. This work shall pave a way towards facile synthesis of ternary alloys for photovoltaic applications.</jats:p
    corecore