11 research outputs found

    Long-term exposure to outdoor and household air pollution and blood pressure in the prospective urban and rural epidemiological (pure) study

    Get PDF
    Exposure to air pollution has been linked to elevated blood pressure (BP) and hypertension, but most research has focused on short-term (hours, days, or months) exposures at relatively low concentrations. We examined the associations between long-term (3-year average) concentrations of outdoor PM2.5 and household air pollution (HAP) from cooking with solid fuels with BP and hypertension in the Prospective Urban and Rural Epidemiology (PURE) study. Outdoor PM2.5 exposures were estimated at year of enrollment for 137,809 adults aged 35–70 years from 640 urban and rural communities in 21 countries using satellite and ground-based methods. Primary use of solid fuel for cooking was used as an indicator of HAP exposure, with analyses restricted to rural participants (n = 43,313) in 27 study centers in 10 countries. BP was measured following a standardized procedure and associations with air pollution examined with mixed-effect regression models, after adjustment for a comprehensive set of potential confounding factors. Baseline outdoor PM2.5 exposure ranged from 3 to 97 μg/m3 across study communities and was associated with an increased odds ratio (OR) of 1.04 (95% CI: 1.01, 1.07) for hypertension, per 10 μg/m3 increase in concentration

    Water Temperature Changes Related to Strong Earthquakes: The Case of the Jinjia Well, Southwest China

    No full text
    Systematic measurements of water temperature are lacking but useful in understanding the relationship between water temperature and earthquakes. Based on the water temperature data, geological structure, borehole structure, and temperature gradient in the Jinjia well, Southwest China, we systematically analysed the water temperature changes related to earthquakes. The water temperature of the Jinjia well recorded the coseismic changes caused by the Wenchuan M7.9 and Panzhihua M6.1 earthquakes in 2008. We also found abnormal changes in the water temperature, after which moderate to strong earthquakes occurred in the surrounding region. The preseismic abnormal changes of the Jinjia well were rising-recovery (rising to a high value and continuing for a period of time before decreasing or quickly recovering), with the range of 0.007–0.07 °C. The maximum change (0.07 °C) occurred before the M7.9 Wenchuan earthquake in 2008. According to the Molchan error diagram, the most likely time for an earthquake to occur is within approximately 4 months after the water temperature exceeds the threshold temperature. In the Jinjia well, the installation depth of the temperature sensor affected the correlation between the temperature changes and earthquakes with a seismic energy density above 10−3 J·m−3. The shorter the distance between the sensor and the fault, the higher the probability of water temperature changes related to earthquakes

    P-Hint-Hunt:A deep parallelized whole genome DNA methylation detection tool

    Get PDF
    BACKGROUND: The increasing studies have been conducted using whole genome DNA methylation detection as one of the most important part of epigenetics research to find the significant relationships among DNA methylation and several typical diseases, such as cancers and diabetes. In many of those studies, mapping the bisulfite treated sequence to the whole genome has been the main method to study DNA cytosine methylation. However, today’s relative tools almost suffer from inaccuracies and time-consuming problems. RESULTS: In our study, we designed a new DNA methylation prediction tool (“Hint-Hunt”) to solve the problem. By having an optimal complex alignment computation and Smith-Waterman matrix dynamic programming, Hint-Hunt could analyze and predict the DNA methylation status. But when Hint-Hunt tried to predict DNA methylation status with large-scale dataset, there are still slow speed and low temporal-spatial efficiency problems. In order to solve the problems of Smith-Waterman dynamic programming and low temporal-spatial efficiency, we further design a deep parallelized whole genome DNA methylation detection tool (“P-Hint-Hunt”) on Tianhe-2 (TH-2) supercomputer. CONCLUSIONS: To the best of our knowledge, P-Hint-Hunt is the first parallel DNA methylation detection tool with a high speed-up to process large-scale dataset, and could run both on CPU and Intel Xeon Phi coprocessors. Moreover, we deploy and evaluate Hint-Hunt and P-Hint-Hunt on TH-2 supercomputer in different scales. The experimental results illuminate our tools eliminate the deviation caused by bisulfite treatment in mapping procedure and the multi-level parallel program yields a 48 times speed-up with 64 threads. P-Hint-Hunt gain a deep acceleration on CPU and Intel Xeon Phi heterogeneous platform, which gives full play of the advantages of multi-cores (CPU) and many-cores (Phi)

    cmFSM: a scalable CPU-MIC coordinated drug-finding tool by frequent subgraph mining

    No full text
    Abstract Background Frequent subgraphs mining is a significant problem in many practical domains. The solution of this kind of problem can particularly used in some large-scale drug molecular or biological libraries to help us find drugs or core biological structures rapidly and predict toxicity of some unknown compounds. The main challenge is its efficiency, as (i) it is computationally intensive to test for graph isomorphisms, and (ii) the graph collection to be mined and mining results can be very large. Existing solutions often require days to derive mining results from biological networks even with relative low support threshold. Also, the whole mining results always cannot be stored in single node memory. Results In this paper, we implement a parallel acceleration tool for classical frequent subgraph mining algorithm called cmFSM. The core idea is to employ parallel techniques to parallelize extension tasks, so as to reduce computation time. On the other hand, we employ multi-node strategy to solve the problem of memory constraints. The parallel optimization of cmFSM is carried out on three different levels, including the fine-grained OpenMP parallelization on single node, multi-node multi-process parallel acceleration and CPU-MIC collaborated parallel optimization. Conclusions Evaluation results show that cmFSM clearly outperforms the existing state-of-the-art miners even if we only hold a few parallel computing resources. It means that cmFSM provides a practical solution to frequent subgraph mining problem with huge number of mining results. Specifically, our solution is up to one order of magnitude faster than the best CPU-based approach on single node and presents a promising scalability of massive mining tasks in multi-node scenario. More source code are available at:Source Code: https://github.com/ysycloud/cmFSM

    Efficient computation of motif discovery on Intel Many Integrated Core (MIC) Architecture

    No full text
    Abstract Background Novel sequence motifs detection is becoming increasingly essential in computational biology. However, the high computational cost greatly constrains the efficiency of most motif discovery algorithms. Results In this paper, we accelerate MEME algorithm targeted on Intel Many Integrated Core (MIC) Architecture and present a parallel implementation of MEME called MIC-MEME base on hybrid CPU/MIC computing framework. Our method focuses on parallelizing the starting point searching method and improving iteration updating strategy of the algorithm. MIC-MEME has achieved significant speedups of 26.6 for ZOOPS model and 30.2 for OOPS model on average for the overall runtime when benchmarked on the experimental platform with two Xeon Phi 3120 coprocessors. Conclusions Furthermore, MIC-MEME has been compared with state-of-arts methods and it shows good scalability with respect to dataset size and the number of MICs. Source code: https://github.com/hkwkevin28/MIC-MEME

    Long-term exposure to outdoor and household air pollution and blood pressure in the Prospective Urban and Rural Epidemiological (PURE) study

    No full text
    Exposure to air pollution has been linked to elevated blood pressure (BP) and hypertension, but most research has focused on short-term (hours, days, or months) exposures at relatively low concentrations. We examined the associations between long-term (3-year average) concentrations of outdoor PM2.5 and household air pollution (HAP) from cooking with solid fuels with BP and hypertension in the Prospective Urban and Rural Epidemiology (PURE) study. Outdoor PM2.5 exposures were estimated at year of enrollment for 137,809 adults aged 35-70 years from 640 urban and rural communities in 21 countries using satellite and ground-based methods. Primary use of solid fuel for cooking was used as an indicator of HAP exposure, with analyses restricted to rural participants (n = 43,313) in 27 study centers in 10 countries. BP was measured following a standardized procedure and associations with air pollution examined with mixed-effect regression models, after adjustment for a comprehensive set of potential confounding factors. Baseline outdoor PM2.5 exposure ranged from 3 to 97 μg/m3 across study communities and was associated with an increased odds ratio (OR) of 1.04 (95% CI: 1.01, 1.07) for hypertension, per 10 μg/m3 increase in concentration. This association demonstrated non-linearity and was strongest for the fourth (PM2.5 \u3e 62 μg/m3) compared to the first (PM2.5 \u3c 14 μg/m3) quartiles (OR = 1.36, 95% CI: 1.10, 1.69). Similar non-linear patterns were observed for systolic BP (β = 2.15 mmHg, 95% CI: -0.59, 4.89) and diastolic BP (β = 1.35, 95% CI: -0.20, 2.89), while there was no overall increase in ORs across the full exposure distribution. Individuals who used solid fuels for cooking had lower BP measures compared to clean fuel users (e.g. 34% of solid fuels users compared to 42% of clean fuel users had hypertension), and even in fully adjusted models had slightly decreased odds of hypertension (OR = 0.93; 95% CI: 0.88, 0.99) and reductions in systolic (-0.51 mmHg; 95% CI: -0.99, -0.03) and diastolic (-0.46 mmHg; 95% CI: -0.75, -0.18) BP. In this large international multi-center study, chronic exposures to outdoor PM2.5 was associated with increased BP and hypertension while there were small inverse associations with HAP
    corecore