223 research outputs found
Crystal structure of stable protein CutA1 from psychrotrophic bacterium Shewanella sp. SIB1
The crystal structure of CutA1 from the psychrotrophic bacterium Shewanella sp. SIB1 in a trimeric form was determined at 2.7 Å resolution. This is the first crystal structure of a psychrotrophic CutA1
Growth of Acetaminophen Polymorphic Crystals and Solution-Mediated Phase Transition from Trihydrate to Form II in Agarose Gel
The growth of acetaminophen polymorphic crystals and the solution-mediated phase transition from trihydrate to form II in agarose gel were investigated. The form II crystals grown in gels, presumably because of the agarose content, dissolved less rapidly at high temperatures and were more stable than in water. The trihydrate crystals in the gel were also expected to be stabilized by containing agarose, but in fact the fine morphology resulted in reduced stability. The solution-mediated phase transition from trihydrate to form II via form II seeding took longer in the gel because the gel slowed down the dissolution of the trihydrate by hindering the dispersion of the form II seeds and delayed the growth of form II by reducing the diffusion rate of the molecules dissolved from the trihydrate. Delays in solution-mediated phase transition and changes in stability for crystals grown in gels indicate the effectiveness of gels in controlling polymorphisms in pharmaceutical compounds.Nishigaki A., Maruyama M., Tanaka S.I., et al. Growth of acetaminophen polymorphic crystals and solution-mediated phase transition from trihydrate to form II in agarose gel. Crystals 11, 1069 (2021); https://doi.org/10.3390/cryst11091069
Structure–function studies of ultrahigh molecular weight isoprenes provide key insights into their biosynthesis
Some plant trans-1,4-prenyltransferases (TPTs) produce ultrahigh molecular weight trans-1,4-polyisoprene (TPI) with a molecular weight of over 1.0 million. Although plant-derived TPI has been utilized in various industries, its biosynthesis and physiological function(s) are unclear. Here, we identified three novel Eucommia ulmoides TPT isoforms—EuTPT1, 3, and 5, which synthesized TPI in vitro without other components. Crystal structure analysis of EuTPT3 revealed a dimeric architecture with a central hydrophobic tunnel. Mutation of Cys94 and Ala95 on the central hydrophobic tunnel no longer synthesizd TPI, indicating that Cys94 and Ala95 were essential for forming the dimeric architecture of ultralong-chain TPTs and TPI biosynthesis. A spatiotemporal analysis of the physiological function of TPI in E. ulmoides suggested that it is involved in seed development and maturation. Thus, our analysis provides functional and mechanistic insights into TPI biosynthesis and uncovers biological roles of TPI in plants
Fatal case of subdural empyema caused by Campylobacter rectus and Slackia exigua
We report a fatal subdural empyema caused by Campylobacter rectus in a 66-year-old female who developed acute onset of confusion, dysarthria, and paresis in her left extremities. A CT scan showed hypodensity in a crescentic formation with a mild mid-line shift. She had a bruise on her forehead caused by a fall several days before admission, which initially raised subdural hematoma (SDH) diagnosis, and a burr hole procedure was planned. However, her condition deteriorated on the admission night, and she died before dawn. An autopsy revealed that she had subdural empyema (SDE) caused by Campylobacter rectus and Slackia exigua. Both microorganisms are oral microorganisms that rarely cause extra-oral infection. In our case, head trauma caused a skull bone fracture, and sinus infection might have expanded to the subdural space causing SDE. CT/MRI findings were not typical for either SDH or SDE. Early recognition of subdural empyema and prompt initiation of treatment with antibiotics and surgical drainage is essential for cases of SDE. We present our case and a review of four reported cases
Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations
Background & Aims Biliary tract cancers (BTCs) are clinically and pathologically heterogeneous and respond poorly to treatment. Genomic profiling can offer a clearer understanding of their carcinogenesis, classification and treatment strategy. We performed large-scale genome sequencing analyses on BTCs to investigate their somatic and germline driver events and characterize their genomic landscape. Methods We analyzed 412 BTC samples from Japanese and Italian populations, 107 by whole-exome sequencing (WES), 39 by whole-genome sequencing (WGS), and a further 266 samples by targeted sequencing. The subtypes were 136 intrahepatic cholangiocarcinomas (ICCs), 101 distal cholangiocarcinomas (DCCs), 109 peri-hilar type cholangiocarcinomas (PHCs), and 66 gallbladder or cystic duct cancers (GBCs/CDCs). We identified somatic alterations and searched for driver genes in BTCs, finding pathogenic germline variants of cancer-predisposing genes. We predicted cell-of-origin for BTCs by combining somatic mutation patterns and epigenetic features. Results We identified 32 significantly and commonly mutated genes including TP53 , KRAS , SMAD4 , NF1 , ARID1A , PBRM1 , and ATR , some of which negatively affected patient prognosis. A novel deletion of MUC17 at 7q22.1 affected patient prognosis. Cell-of-origin predictions using WGS and epigenetic features suggest hepatocyte-origin of hepatitis-related ICCs. Deleterious germline mutations of cancer-predisposing genes such as BRCA1 , BRCA2 , RAD51D , MLH1 , or MSH2 were detected in 11% (16/146) of BTC patients. Conclusions BTCs have distinct genetic features including somatic events and germline predisposition. These findings could be useful to establish treatment and diagnostic strategies for BTCs based on genetic information. Lay summary We here analyzed genomic features of 412 BTC samples from Japanese and Italian populations. A total of 32 significantly and commonly mutated genes were identified, some of which negatively affected patient prognosis, including a novel deletion of MUC17 at 7q22.1 . Cell-of-origin predictions using WGS and epigenetic features suggest hepatocyte-origin of hepatitis-related ICCs. Deleterious germline mutations of cancer-predisposing genes were detected in 11% of patients with BTC. BTCs have distinct genetic features including somatic events and germline predisposition
Stabilization by Fusion to the C-terminus of Hyperthermophile Sulfolobus tokodaii RNase HI: A Possibility of Protein Stabilization Tag
RNase HI from the hyperthermophile Sulfolobus tokodaii (Sto-RNase HI) is stabilized by its C-terminal residues. In this work, the stabilization effect of the Sto-RNase HI C-terminal residues was investigated in detail by thermodynamic measurements of the stability of variants lacking the disulfide bond (C58/145A), or the six C-terminal residues (ΔC6) and by structural analysis of ΔC6. The results showed that the C-terminal does not affect overall structure and stabilization is caused by local interactions of the C-terminal, suggesting that the C-terminal residues could be used as a “stabilization tag.” The Sto-RNase HI C-terminal residues (-IGCIILT) were introduced as a tag on three proteins. Each chimeric protein was more stable than its wild-type protein. These results suggested the possibility of a simple stabilization technique using a stabilization tag such as Sto-RNase HI C-terminal residues
Association of variations in HLA class II and other loci with susceptibility to EGFR-mutated lung adenocarcinoma
Lung adenocarcinoma driven by somatic EGFR mutations is more prevalent in East Asians (30-50%) than in European/Americans (10-20%). Here we investigate genetic factors underlying the risk of this disease by conducting a genome-wide association study, followed by two validation studies, in 3,173 Japanese patients with EGFR mutation-positive lung adenocarcinoma and 15,158 controls. Four loci, 5p15.33 (TERT), 6p21.3 (BTNL2), 3q28 (TP63) and 17q24.2 (BPTF), previously shown to be strongly associated with overall lung adenocarcinoma risk in East Asians, were re-discovered as loci associated with a higher susceptibility to EGFR mutation-positive lung adenocarcinoma. In addition, two additional loci, HLA class II at 6p21.32 (rs2179920; P =5.1 × 10(-17), per-allele OR=1.36) and 6p21.1 (FOXP4) (rs2495239; P=3.9 × 10(-9), per-allele OR=1.19) were newly identified as loci associated with EGFR mutation-positive lung adenocarcinoma. This study indicates that multiple genetic factors underlie the risk of lung adenocarcinomas with EGFR mutations
- …