75 research outputs found
Limb diversity and digit reduction in reptilian evolution
Journal ArticleThe study of morphological rules, or trends, offered classical biologists the opportunity to address the mechanisms underlying the evolution of anatomical designs. Regularities in evolution suggested that common functional or developmental rules governed the transformation of structures. Parallelism is one such example
Recommended from our members
The feeding system of <i>Tiktaalik roseae</i>: an intermediate between suction feeding and biting
Changes to feeding structures are a fundamental component of the vertebrate transition from water to land. Classically, this event has been characterized as a shift from an aquatic, suction-based mode of prey capture involving cranial kinesis to a biting-based feeding system utilizing a rigid skull capable of capturing prey on land. Here we show that a key intermediate, Tiktaalik roseae, was capable of cranial kinesis despite significant restructuring of the skull to facilitate biting and snapping. Lateral sliding joints between the cheek and dermal skull roof, as well as independent mobility between the hyomandibula and palatoquadrate, enable the suspensorium of T. roseae to expand laterally in a manner similar to modern alligator gars and polypterids. This movement can expand the spiracular and opercular cavities during feeding and respiration, which would direct fluid through the feeding apparatus. Detailed analysis of the sutural morphology of T. roseae suggests that the ability to laterally expand the cheek and palate was maintained during the fish-to-tetrapod transition, implying that limited cranial kinesis was plesiomorphic to the earliest limbed vertebrates. Furthermore, recent kinematic studies of feeding in gars demonstrate that prey capture with lateral snapping can synergistically combine both biting and suction, rather than trading off one for the other. A âgar-likeâ stage in early tetrapod evolution might have been an important intermediate step in the evolution of terrestrial feeding systems by maintaining suction-generation capabilities while simultaneously elaborating a mechanism for biting-based prey capture
Commencement of the Class of 2016
Itâs amazing how fast three years passes. And in the end, IMSA is so much more than just a building. Others may never truly understand what it means to be a part of this community, but we will know. Years from now, weâll remember the thrill of Clash or the nostalgic warmth of Carnival. Weâll remember late nights spent laughing with best friends, and weâll remember what it felt like to belong here. Itâs true, IMSA gave us the building blocks for academic and professional success. But it also gave us each other. And as we stand here as a class for the last time, I thank IMSA for bringing us together.
Class of 2016, never stop learning and growing. Never lose that drive or that passion, and never forget what you have gained from IMSA. As we move on to another chapter of our lives, we will continue to expand our brick-and-mortar walls. We will gain countless more chances, and we will learn countless more things. It is my hope that we, as a class, will continue to seek out new opportunities, and I hope that we continue to find better ways of cementing it all together. Yet no matter how far we go, part of us will always belong in a residence hall at 1500 Sullivan Road. And no matter how far apart we may end up, we can find comfort in knowing that we have built something beautiful together
Heidi Dong, Student Council Presiden
Recommended from our members
Ossification patterns of the carpus and tarsus in salamanders and impacts of preaxial dominance on the fin-to-limb transition
Early limb skeletogenesis in salamanders is characterized by preaxial elements, digits I and II forming earlier than their postaxial counterparts (digits III to V), a phenomenon known as preaxial dominance, whereas in amniotes and anurans, these developmental sequences are reversed. This pattern characterizes the late skeletogenesis of digits and zeugopodium of anamniote tetrapods but remains unknown in carpals/tarsals. To correct this gap in knowledge, we investigate the ossification patterns of the carpals/tarsals in six salamander families/clades based on microâcomputed tomography scans. We found that preaxial dominance is seen in the distal carpals/tarsals of several salamander clades and diverse early tetrapods, such as temnospondyls and amniotes. This distribution suggests that preaxial dominance is a primitive developmental pattern in tetrapods. Our results demonstrate that the distal carpals/tarsals are developmentally and evolutionarily independent in the autopodium, and preaxial dominance facilitates stabilization of the number of distal carpals/tarsals during fin-to-limb transition and digit reduction in early tetrapods
Recommended from our members
Fin ray patterns at the fin-to-limb transition
The fin-to-limb transition was marked by the origin of digits and the loss of dermal fin rays. Paleontological research into this transformation has focused on the evolution of the endoskeleton, with little attention paid to fin ray structure and function. To address this knowledge gap, we study the dermal rays of the pectoral fins of 3 key tetrapodomorph taxaâSauripterus taylori (Rhizodontida), Eusthenopteron foordi (Tristichopteridae), and Tiktaalik roseae (Elpistostegalia)âusing computed tomography. These data show several trends in the lineage leading to digited forms, including the consolidation of fin rays (e.g., reduced segmentation and branching), reduction of the fin web, and unexpectedly, the evolution of asymmetry between dorsal and ventral hemitrichia. In Eusthenopteron, dorsal rays cover the preaxial endoskeleton slightly more than ventral rays. In Tiktaalik, dorsal rays fully cover the third and fourth mesomeres, while ventral rays are restricted distal to these elements, suggesting the presence of ventralized musculature at the fin tip analogous to a fleshy âpalm.â Asymmetry is also observed in cross-sectional areas of dorsal and ventral rays. Eusthenopteron dorsal rays are slightly larger than ventral rays; by contrast, Tiktaalik dorsal rays can be several times larger than ventral rays, and degree of asymmetry appears to be greater at larger sizes. Analysis of extant osteichthyans suggests that cross-sectional asymmetry in the dermal rays of paired fins is plesiomorphic to crown group osteichthyans. The evolution of dermal rays in crownward stem tetrapods reflects adaptation for a fin-supported elevated posture and resistance to substrate-based loading prior to the origin of digits
A conserved Shh cis-regulatory module highlights a common developmental origin of unpaired and paired fins
Despite their evolutionary, developmental, and functional importance the origin of vertebrate paired appendages remains uncertain. In mice, a single enhancer termed ZRS is solely responsible for Shh expression in limbs. Here, zebrafish and mouse transgenic assays trace the functional equivalence of ZRS across the gnathostome phylogeny. CRISPR/Cas9-mediated deletion of the medaka-ZRS and enhancer assays reveal the existence of ZRS shadow enhancers in both teleost and human genomes. Deletion of both ZRS and shadow ZRS abolish shh expression and completely truncate pectoral fin formation. Strikingly, deletion of ZRS results in an almost complete ablation of the dorsal fin. This finding indicates that a ZRS-Shh regulatory module is shared by paired and median fins, and that paired fins likely emerged by the coâoption of developmental programs established in the median fins of stem gnathostomes. Shh function was later reinforced in pectoral fin development with the recruitment of shadow enhancers, conferring additional robustness
Recommended from our members
Analysis of the African coelacanth genome sheds light on tetrapod evolution
It was a zoological sensation when a living specimen of the coelacanth was first discovered in 1938, as this lineage of lobe-finned fish was thought to have gone extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features . Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain, and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues demonstrate the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution
The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons
To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences
- âŠ