1,000 research outputs found

    Leukocyte DNA as Surrogate for the Evaluation of Imprinted Loci Methylation in Mammary Tissue DNA

    Get PDF
    There is growing interest in identifying surrogate tissues to identify epimutations in cancer patients since primary target tissues are often difficult to obtain. Methylation patterns at imprinted loci are established during gametogenesis and post fertilization and their alterations have been associated with elevated risk of cancer. Methylation at several imprinted differentially methylated regions (GRB10 ICR, H19 ICR, KvDMR, SNRPN/SNURF ICR, IGF2 DMR0, and IGF2 DMR2) were analyzed in DNA from leukocytes and mammary tissue (normal, benign diseases, or malignant tumors) from 87 women with and without breast cancer (average age of cancer patients: 53; range: 31–77). Correlations between genomic variants and DNA methylation at the studied loci could not be assessed, making it impossible to exclude such effects. Methylation levels observed in leukocyte and mammary tissue DNA were close to the 50% expected for monoallellic methylation. While no correlation was observed between leukocyte and mammary tissue DNA methylation for most of the analyzed imprinted genes, Spearman's correlations were statistically significant for IGF2 DMR0 and IGF2 DMR2, although absolute methylation levels differed. Leukocyte DNA methylation levels of selected imprinted genes may therefore serve as surrogate markers of DNA methylation in cancer tissue

    Longitudinal associations between specific types of emotional reactivity and psychological, physical health, and school adjustment

    Full text link
    Using a multimethod, multiinformant longitudinal design, we examined associations between specific forms of positive and negative emotional reactivity at age 5, children’s effortful control (EC), emotion regulation, and social skills at age 7, and adolescent functioning across psychological, academic, and physical health domains at ages 15/16 (N = 383). We examined how distinct components of childhood emotional reactivity directly and indirectly predict domain-specific forms of adolescent adjustment, thereby identifying developmental pathways between specific types of emotional reactivity and adjustment above and beyond the propensity to express other forms of emotional reactivity. Age 5 high-intensity positivity was associated with lower age 7 EC and more adolescent risk-taking; age 5 low-intensity positivity was associated with better age 7 EC and adolescent cardiovascular health, providing evidence for the heterogeneity of positive emotional reactivity. Indirect effects indicated that children’s age 7 social skills partially explain several associations between age 5 fear and anger reactivity and adolescent adjustment. Moreover, age 5 anger reactivity, low-, and high-intensity positivity were associated with adolescent adjustment via age 7 EC. The findings from this interdisciplinary, long-term longitudinal study have significant implications for prevention and intervention work aiming to understand the role of emotional reactivity in the etiology of adjustment and psychopathology

    In the blood: the myth and reality of genetic markers of identity

    Full text link
    The differences between copies of the human genome are very small, but tend to cluster in different populations. So, despite the fact that low inter-population differentiation does not support a biological definition of races statistical methods are nonetheless claimed to be able to predict successfully the population of origin of a DNA sample. Such methods are employed in commercial genetic ancestry tests, and particular genetic signatures, often in the male-specific Y-chromosome or maternally-inherited mitochondrial DNA, have become widely identified with particular ancestral or existing groups, such as Vikings, Jews, or Zulus. Here, we provide a primer on genetics, and describe how genetic markers have become associated with particular groups. We describe the conflict between population genetics and individual-based genetics and the pitfalls of over-simplistic genetic interpretations, arguing that although the tests themselves are reliable, the interpretations are unreliable and strongly influenced by cultural and other social forces.</p

    Photoionization efficiency spectroscopy and density functional theory investigations of RhHo2On, (n=0-2) clusters

    Get PDF
    The experimental and theoretical adiabatic ionization energies (IEs) of the rhodium-holmium bimetallic clusters RhHo(2)O(n) (n=0-2) have been determined using photoionization efficiency spectroscopy and density functional theory (DFT) calculations. Both sets of data show the IE of RhHo(2)O to be significantly lower than the values for RhHo(2) and RhHo(2)O(2), which are found to be similar. This indicates that there are significant changes in electronic properties upon sequential addition of oxygen atoms to RhHo(2). The DFT investigations show that the lowest energy neutral structures are a C(2v) triangle for RhHo(2), a C(2v) planar structure for RhHo(2)O where the O atom is doubly bridged to the Ho-Ho bond, and a C(2v) nonplanar structure for RhHo(2)O(2), where the O(2) is dissociative and each O atom is doubly bridged to the Ho-Ho bond in the cluster above and below the RhHo(2) trimer plane. Good correlation between the experimental and computational IE data imply that the lowest energy neutral structures calculated are the most likely isomers ionized in the molecular beam. In particular, the theoretical adiabatic IE for the dissociative RhHo(2)O(2) structure is found to compare better with the experimentally determined value than the corresponding lowest energy O(2) associative structure.Alexander S. Gentleman, Matthew A. Addicoat, Viktoras Dryza, Jason R. Gascooke, Mark A. Buntine, and Gregory F. Meth

    AWclust: point-and-click software for non-parametric population structure analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Population structure analysis is important to genetic association studies and evolutionary investigations. Parametric approaches, e.g. STRUCTURE and L-POP, usually assume Hardy-Weinberg equilibrium (HWE) and linkage equilibrium among loci in sample population individuals. However, the assumptions may not hold and allele frequency estimation may not be accurate in some data sets. The improved version of STRUCTURE (version 2.1) can incorporate linkage information among loci but is still sensitive to high background linkage disequilibrium. Nowadays, large-scale single nucleotide polymorphisms (SNPs) are becoming popular in genetic studies. Therefore, it is imperative to have software that makes full use of these genetic data to generate inference even when model assumptions do not hold or allele frequency estimation suffers from high variation.</p> <p>Results</p> <p>We have developed point-and-click software for non-parametric population structure analysis distributed as an R package. The software takes advantage of the large number of SNPs available to categorize individuals into ethnically similar clusters and it does not require assumptions about population models. Nor does it estimate allele frequencies. Moreover, this software can also infer the optimal number of populations.</p> <p>Conclusion</p> <p>Our software tool employs non-parametric approaches to assign individuals to clusters using SNPs. It provides efficient computation and an intuitive way for researchers to explore ethnic relationships among individuals. It can be complementary to parametric approaches in population structure analysis.</p

    Episodic Occurrence of Favourable Weather Constrains Recovery of a Cold Desert Shrubland After Fire

    Get PDF
    Key to the long-term resilience of dryland ecosystems is the recovery of foundation plant species following disturbance. In ecosystems with high interannual weather variability, understanding the influence of short-term environmental conditions on establishment of foundation species is essential for identifying vulnerable landscapes and developing restoration strategies. We asked how annual environmental conditions affect post-fire establishment of Artemisia tridentata, a shrub species that dominates landscapes across much of the western United States, and evaluated the influence of episodic establishment on population recovery. We collected A. tridentata stem samples from 33 plots in 12 prescribed fire sites that burned 8–11 years before sampling. We determined individual establishment years using annual growth rings. We measured seasonal soil environmental conditions at the study sites and asked if these conditions predicted annual establishment density. We then evaluated whether establishment patterns could be predicted by site-level climate or dominant subspecies. Finally, we tested the effect of the magnitude and frequency of post-fire establishment episodes on long-term population recovery. Annual post-fire recruitment of A. tridentata was driven by the episodic availability of spring soil moisture. Annual establishment was highest with wetter spring soils (relative influence [RI] = 19.4%) and later seasonal dry-down (RI = 11.8%) in the year of establishment. Establishment density declined greatly 4 to 5 years after fire (RI = 17.1%). Post-fire establishment patterns were poorly predicted by site-level mean climate (marginal R2 ≤ 0.18) and dominant subspecies (marginal R2 ≤ 0.43). Population recovery reflected the magnitude, but not the frequency, of early post-fire establishment pulses. Post-fire A. tridentata density and cover (measured 8–11 years after fire) were more strongly related to the magnitude of the largest establishment pulse than to establishment frequency, suggesting that population recovery may occur with a single favourable establishment year. Synthesis and applications. This study demonstrates the importance of episodic periods of favourable weather for long-term plant population recovery following disturbance. Management strategies that increase opportunities for seed availability to coincide with favourable weather conditions, such as retaining unburned patches or repeated seeding treatments, can improve restoration outcomes in high-priority areas

    Identifying Signatures of Natural Selection in Tibetan and Andean Populations Using Dense Genome Scan Data

    Get PDF
    High-altitude hypoxia (reduced inspired oxygen tension due to decreased barometric pressure) exerts severe physiological stress on the human body. Two high-altitude regions where humans have lived for millennia are the Andean Altiplano and the Tibetan Plateau. Populations living in these regions exhibit unique circulatory, respiratory, and hematological adaptations to life at high altitude. Although these responses have been well characterized physiologically, their underlying genetic basis remains unknown. We performed a genome scan to identify genes showing evidence of adaptation to hypoxia. We looked across each chromosome to identify genomic regions with previously unknown function with respect to altitude phenotypes. In addition, groups of genes functioning in oxygen metabolism and sensing were examined to test the hypothesis that particular pathways have been involved in genetic adaptation to altitude. Applying four population genetic statistics commonly used for detecting signatures of natural selection, we identified selection-nominated candidate genes and gene regions in these two populations (Andeans and Tibetans) separately. The Tibetan and Andean patterns of genetic adaptation are largely distinct from one another, with both populations showing evidence of positive natural selection in different genes or gene regions. Interestingly, one gene previously known to be important in cellular oxygen sensing, EGLN1 (also known as PHD2), shows evidence of positive selection in both Tibetans and Andeans. However, the pattern of variation for this gene differs between the two populations. Our results indicate that several key HIF-regulatory and targeted genes are responsible for adaptation to high altitude in Andeans and Tibetans, and several different chromosomal regions are implicated in the putative response to selection. These data suggest a genetic role in high-altitude adaption and provide a basis for future genotype/phenotype association studies necessary to confirm the role of selection-nominated candidate genes and gene regions in adaptation to altitude

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    NMR methods to monitor the enzymatic depolymerization of heparin

    Get PDF
    Heparin and the related glycosaminoglycan, heparan sulfate, are polydisperse linear polysaccharides that mediate numerous biological processes due to their interaction with proteins. Because of the structural complexity and heterogeneity of heparin and heparan sulfate, digestion to produce smaller oligosaccharides is commonly performed prior to separation and analysis. Current techniques used to monitor the extent of heparin depolymerization include UV absorption to follow product formation and size exclusion or strong anion exchange chromatography to monitor the size distribution of the components in the digest solution. In this study, we used 1H nuclear magnetic resonance (NMR) survey spectra and NMR diffusion experiments in conjunction with UV absorption measurements to monitor heparin depolymerization using the enzyme heparinase I. Diffusion NMR does not require the physical separation of the components in the reaction mixture and instead can be used to monitor the reaction solution directly in the NMR tube. Using diffusion NMR, the enzymatic reaction can be stopped at the desired time point, maximizing the abundance of larger oligosaccharides for protein-binding studies or completion of the reaction if the goal of the study is exhaustive digestion for characterization of the disaccharide composition. In this study, porcine intestinal mucosa heparin was depolymerized using the enzyme heparinase I. The unsaturated bond formed by enzymatic cleavage serves as a UV chromophore that can be used to monitor the progress of the depolymerization and for the detection and quantification of oligosaccharides in subsequent separations. The double bond also introduces a unique multiplet with peaks at 5.973, 5.981, 5.990, and 5.998 ppm in the 1H-NMR spectrum downfield of the anomeric region. This multiplet is produced by the proton of the C-4 double bond of the non-reducing end uronic acid at the cleavage site. Changes in this resonance were used to monitor the progression of the enzymatic digestion and compared to the profile obtained from UV absorbance measurements. In addition, in situ NMR diffusion measurements were explored for their ability to profile the different-sized components generated over the course of the digestion
    • …
    corecore