312 research outputs found

    Magnetohydrodynamic Simulations of the Atmosphere of HD 209458b

    Full text link
    We present the first three-dimensional magnetohydrodynamic (MHD) simulations of the atmosphere of HD 209458b which self-consistently include reduction of winds due to the Lorentz force and Ohmic heating. We find overall wind structures similar to that seen in previous models of hot Jupiter atmospheres, with strong equatorial jets and meridional flows poleward near the day side and equatorward near the night side. Inclusion of magnetic fields slows those winds and leads to Ohmic dissipation. We find wind slowing ranging from 10%-40% for reasonable field strengths. We find Ohmic dissipation rates ~10^17 W at 100 bar, orders of magnitude too small to explain the inflated radius of this planet. Faster wind speeds, not achievable in these anelastic calculations, may be able to increase this value somewhat, but likely will not be able to close the gap necessary to explain the inflated radius. We demonstrate that the discrepancy between the simulations presented here and previous models is due to inadequate treatment of magnetic field geometry and evolution. Induced poloidal fields become much larger than those imposed, highlighting the need for a self-consistent MHD treatment of these hot atmospheres.Comment: 6 pages, 4 figures, accepted at ApJ

    Three-dimensional atmospheric circulation of hot Jupiters on highly eccentric orbits

    Full text link
    Of the over 800 exoplanets detected to date, over half are on non-circular orbits, with eccentricities as high as 0.93. Such orbits lead to time-variable stellar heating, which has implications for the planet's atmospheric dynamical regime. However, little is known about this dynamical regime, and how it may influence observations. Therefore, we present a systematic study of hot Jupiters on highly eccentric orbits using the SPARC/MITgcm, a model which couples a three-dimensional general circulation model with a plane-parallel, two-stream, non-grey radiative transfer model. In our study, we vary the eccentricity and orbit-average stellar flux over a wide range. We demonstrate that the eccentric hot Jupiter regime is qualitatively similar to that of planets on circular orbits; the planets possess a superrotating equatorial jet and exhibit large day-night temperature variations. We show that these day-night heating variations induce momentum fluxes equatorward to maintain the superrotating jet throughout its orbit. As the eccentricity and/or stellar flux is increased, the superrotating jet strengthens and narrows, due to a smaller Rossby deformation radius. For a select number of model integrations, we generate full-orbit lightcurves and find that the timing of transit and secondary eclipse viewed from Earth with respect to periapse and apoapse can greatly affect what we see in infrared (IR) lightcurves; the peak in IR flux can lead or lag secondary eclipse depending on the geometry. For those planets that have large day-night temperature variations and rapid rotation rates, we find that the lightcurves exhibit "ringing" as the planet's hottest region rotates in and out of view from Earth. These results can be used to explain future observations of eccentric transiting exoplanets.Comment: 20 pages, 18 figures, 2 tables; Accepted to Ap

    Meteorology of Jupiter's Equatorial Hot Spots and Plumes from Cassini

    Get PDF
    We present an updated analysis of Jupiter's equatorial meteorology from Cassini observations. For two months preceding the spacecraft's closest approach, the Imaging Science Subsystem (ISS) onboard regularly imaged the atmosphere. We created time-lapse movies from this period in order to analyze the dynamics of equatorial hot spots and their interactions with adjacent latitudes. Hot spots are quasi-stable, rectangular dark areas on visible-wavelength images, with defined eastern edges that sharply contrast with surrounding clouds, but diffuse western edges serving as nebulous boundaries with adjacent equatorial plumes. Hot spots exhibit significant variations in size and shape over timescales of days and weeks. Some of these changes correspond with passing vortex systems from adjacent latitudes interacting with hot spots. Strong anticyclonic gyres present to the south and southeast of the dark areas appear to circulate into hot spots. Impressive, bright white plumes occupy spaces in between hot spots. Compact cirrus-like 'scooter' clouds flow rapidly through the plumes before disappearing within the dark areas. These clouds travel at 150-200 m/s, much faster than the 100 m/s hot spot and plume drift speed. This raises the possibility that the scooter clouds may be more illustrative of the actual jet stream speed at these latitudes. Most previously published zonal wind profiles represent the drift speed of the hot spots at their latitude from pattern matching of the entire longitudinal image strip. If a downward branch of an equatorially-trapped Rossby waves controls the overall appearance of hot spots, however, the westward phase velocity of the wave leads to underestimates of the true jet stream speed.Comment: 33 pages, 11 figures; accepted for publication in Icarus; for supplementary movies, please contact autho

    Investigation of Jupiter's Equatorial Hotspots and Plumes Using Cassini ISS Observations

    Get PDF
    We present updated analysis of Jupiter's equatorial meteorology from Cassini observations. For two months preceding the spacecraft's closest approach, the ISS onboard regularly imaged the atmosphere. We created time-lapse movies from this period in order to analyze the dynamics of equatorial 5-micron hot spots and their interactions with adjacent latitudes. Hot spots are quasi-stable, rectangular dark areas on visible-wavelength images, with defined eastern edges that sharply contrast with surrounding clouds, but a diffuse western edge serving as a nebulous boundary with adjacent equatorial plumes. Hot spots exhibit significant variations in size and shape over timescales of days and weeks. Some of these changes correspond with passing vortex systems from adjacent latitudes interacting with hot spots. Strong anticyclonic gyres present to the south and southeast of the dark areas appear to circulate into hot spots. Impressive, bright white plumes occupy spaces in between hot spots. Compact cirrus-iike 'scooter' clouds flow rapidly through the plumes before disappearing within the dark areas. This raises the possibility that the plumes and fast-moving clouds are at higher altitudes, because their speed does not match previously published zonal wind profiles. Most profiles represent the drift speed of the hot spots at their latitude from pattern matching of the entire longitudinal image strip. If a downward branch of an equatorially-trapped Rossby waves controls the overall appearance of hot spots, however, the westward phase velocity of the wave leads to underestimates of the true jet stream speed. Instead, our expanded data set demonstrating the rapid flow of these scooter clouds may be more illustrative of the actual jet stream speed at these latitudes. This research was supported by a NASA JDAP grant and the NASA Postdoctoral Program

    The 8 Micron Phase Variation of the Hot Saturn HD 149026b

    Get PDF
    We monitor the star HD 149026 and its Saturn-mass planet at 8.0 micron over slightly more than half an orbit using the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. We find an increase of 0.0227% +/- 0.0066% (3.4 sigma significance) in the combined planet-star flux during this interval. The minimum flux from the planet is 45% +/- 19% of the maximum planet flux, corresponding to a difference in brightness temperature of 480 +/- 140 K between the two hemispheres. We derive a new secondary eclipse depth of 0.0411% +/- 0.0076% in this band, corresponding to a dayside brightness temperature of 1440 +/- 150 K. Our new secondary eclipse depth is half that of a previous measurement (3.0 sigma difference) in this same bandpass by Harrington et al. (2007). We re-fit the Harrington et al. (2007) data and obtain a comparably good fit with a smaller eclipse depth that is consistent with our new value. In contrast to earlier claims, our new eclipse depth suggests that this planet's dayside emission spectrum is relatively cool, with an 8 micron brightness temperature that is less than the maximum planet-wide equilibrium temperature. We measure the interval between the transit and secondary eclipse and find that that the secondary eclipse occurs 20.9 +7.2 / -6.5 minutes earlier (2.9 sigma) than predicted for a circular orbit, a marginally significant result. This corresponds to e*cos(omega) = -0.0079 +0.0027 / -0.0025 where e is the planet's orbital eccentricity and omega is the argument of pericenter.Comment: 17 pages, 12 figure, accepted for publication in Ap

    Evolution of "51Peg b-like" Planets

    Get PDF
    About one-quarter of the extrasolar giant planets discovered so far have orbital distances smaller than 0.1 AU. These ``51Peg b-like'' planets can now be directly characterized, as shown by the planet transiting in front the star HD209458. We review the processes that affect their evolution. We apply our work to the case of HD209458b, whose radius has been recently measured. We argue that its radius can be reproduced only when the deep atmosphere is assumed to be unrealistically hot. When using more realistic atmospheric temperatures, an energy source appears to be missing in order to explain HD209458b's large size. The most likely source of energy available is not in the planet's spin or orbit, but in the intense radiation received from the parent star. We show that the radius of HD209458b can be reproduced if a small fraction (~1%) of the stellar flux is transformed into kinetic energy in the planetary atmosphere and subsequently converted to thermal energy by dynamical processes at pressures of tens of bars.Comment: 11 pages including 9 figures. A&A, in press. Also available at http://www.obs-nice.fr/guillot/pegasi-planets

    A map of the day-night contrast of the extrasolar planet HD 189733b

    Get PDF
    "Hot Jupiter" extrasolar planets are expected to be tidally locked because they are close (<0.05 astronomical units, where 1 AU is the average Sun-Earth distance) to their parent stars, resulting in permanent daysides and nightsides. By observing systems where the planet and star periodically eclipse each other, several groups have been able to estimate the temperatures of the daysides of these planets. A key question is whether the atmosphere is able to transport the energy incident upon the dayside to the nightside, which will determine the temperature at different points on the planet's surface. Here we report observations of HD 189733, the closest of these eclipsing planetary systems, over half an orbital period, from which we can construct a 'map' of the distribution of temperatures. We detected the increase in brightness as the dayside of the planet rotated into view. We estimate a minimum brightness temperature of 973 +/- 33 K and a maximum brightness temperature of 1212 +/- 11 K at a wavelength of 8 microns, indicating that energy from the irradiated dayside is efficiently redistributed throughout the atmosphere, in contrast to a recent claim for another hot Jupiter. Our data indicate that the peak hemisphere-integrated brightness occurs 16±\pm6 degrees before opposition, corresponding to a hot spot shifted east of the substellar point. The secondary eclipse (when the planet moves behind the star) occurs 120 +/- 24 s later than predicted, which may indicate a slightly eccentric orbit.Comment: To appear in the May 10 2007 issue of Nature, 10 pages, 2 black and white figures, 1 colo

    Atmospheric Circulation of Eccentric Hot Jupiter HAT-P-2b

    Get PDF
    The hot Jupiter HAT-P-2b has become a prime target for Spitzer Space Telescope observations aimed at understanding the atmospheric response of exoplanets on highly eccentric orbits. Here we present a suite of three-dimensional atmospheric circulation models for HAT-P-2b that investigate the effects of assumed atmospheric composition and rotation rate on global scale winds and thermal patterns. We compare and contrast atmospheric models for HAT-P-2b, which assume one and five times solar metallicity, both with and without TiO/VO as atmospheric constituents. Additionally we compare models that assume a rotation period of half, one, and two times the nominal pseudo-synchronous rotation period. We find that changes in assumed atmospheric metallicity and rotation rate do not significantly affect model predictions of the planetary flux as a function of orbital phase. However, models in which TiO/VO are present in the atmosphere develop a transient temperature inversion between the transit and secondary eclipse events that results in significant variations in the timing and magnitude of the peak of the planetary flux compared with models in which TiO/VO are omitted from the opacity tables. We find that no one single atmospheric model can reproduce the recently observed full orbit phase curves at 3.6, 4.5 and 8.0 μm, which is likely due to a chemical process not captured by our current atmospheric models for HAT-P-2b. Further modeling and observational efforts focused on understanding the chemistry of HAT-P-2b's atmosphere are needed and could provide key insights into the interplay between radiative, dynamical, and chemical processes in a wide range of exoplanet atmospheres
    • …
    corecore