479 research outputs found
Analysis of adenoviral attachment to human platelets
<p>Abstract</p> <p>Background</p> <p>Systemic adenoviral (Ad) vector administration is associated with thrombocytopenia. Recently, Ad interaction with mouse platelets emerged as a key player determining liver uptake and platelet clearance. However, whether Ad can activate platelets is controversial. Thus, <it>in vitro </it>analysis of Ad attachment to platelets is of interest.</p> <p>Methods</p> <p>We developed a direct flow cytometry assay to specifically detect Ad particles adherent to human platelets. The method was pre-validated in nucleated cells. Blocking assays were employed to specifically inhibit Ad attachment to platelets. Platelet activation was analyzed using annexin v flow cytometry.</p> <p>Results</p> <p>We found <it>in vitro </it>that Ad binding to human platelets is synergistically enhanced by the combination of platelet activation by thrombin and MnCl2 supplementation. Of note, Ad binding could activate human platelets. Platelets bound Ad displaying an RGD ligand in the fiber knob more efficiently than unmodified Ad. In contrast to a previous report, CAR expression was not detected on human platelets. Integrins appear to mediate Ad binding to platelets, at least partially. Finally, αIIbβ3-deficient platelets from a patient with Glanzmann thrombasthenia could bind Ad 5-fold more efficiently than normal platelets.</p> <p>Conclusion</p> <p>The flow cytometry methodology developed herein allows the quantitative measurement of Ad attachment to platelets and may provide a useful <it>in vitro </it>approach to investigate Ad interaction with platelets.</p
A Characterization of Scale Invariant Responses in Enzymatic Networks
An ubiquitous property of biological sensory systems is adaptation: a step
increase in stimulus triggers an initial change in a biochemical or
physiological response, followed by a more gradual relaxation toward a basal,
pre-stimulus level. Adaptation helps maintain essential variables within
acceptable bounds and allows organisms to readjust themselves to an optimum and
non-saturating sensitivity range when faced with a prolonged change in their
environment. Recently, it was shown theoretically and experimentally that many
adapting systems, both at the organism and single-cell level, enjoy a
remarkable additional feature: scale invariance, meaning that the initial,
transient behavior remains (approximately) the same even when the background
signal level is scaled. In this work, we set out to investigate under what
conditions a broadly used model of biochemical enzymatic networks will exhibit
scale-invariant behavior. An exhaustive computational study led us to discover
a new property of surprising simplicity and generality, uniform linearizations
with fast output (ULFO), whose validity we show is both necessary and
sufficient for scale invariance of enzymatic networks. Based on this study, we
go on to develop a mathematical explanation of how ULFO results in scale
invariance. Our work provides a surprisingly consistent, simple, and general
framework for understanding this phenomenon, and results in concrete
experimental predictions
Phylogeny and expression analysis of C-reactive protein (CRP) and serum amyloid-P (SAP) like genes reveal two distinct groups in fish
This work was funded by British Society of Animal Science/Genesis Faraday to both SAM and SB Immune control of energy reallocation in fish and a BBSRC Research Experience Placements (2010).Peer reviewedPublisher PD
Deep Archetypal Analysis
"Deep Archetypal Analysis" generates latent representations of
high-dimensional datasets in terms of fractions of intuitively understandable
basic entities called archetypes. The proposed method is an extension of linear
"Archetypal Analysis" (AA), an unsupervised method to represent multivariate
data points as sparse convex combinations of extremal elements of the dataset.
Unlike the original formulation of AA, "Deep AA" can also handle side
information and provides the ability for data-driven representation learning
which reduces the dependence on expert knowledge. Our method is motivated by
studies of evolutionary trade-offs in biology where archetypes are species
highly adapted to a single task. Along these lines, we demonstrate that "Deep
AA" also lends itself to the supervised exploration of chemical space, marking
a distinct starting point for de novo molecular design. In the unsupervised
setting we show how "Deep AA" is used on CelebA to identify archetypal faces.
These can then be superimposed in order to generate new faces which inherit
dominant traits of the archetypes they are based on.Comment: Published at the German Conference on Pattern Recognition 2019 (GCPR
Head-mounted Sensory Augmentation Device: Comparing Haptic and Audio Modality
This paper investigates and compares the effectiveness of haptic and audio modality for navigation in low visibility environment using a sensory augmentation device. A second generation head-mounted vibrotactile interface as a sensory augmentation prototype was developed to help users to navigate in such environments. In our experiment, a subject navigates along a wall relying on the haptic or audio feedbacks as navigation commands. Haptic/audio feedback is presented to the subjects according to the information measured from the walls to a set of 12 ultrasound sensors placed around a helmet and a classification algorithm by using multilayer perceptron neural network. Results showed the haptic modality leads to significantly lower route deviation in navigation compared to auditory feedback. Furthermore, the NASA TLX questionnaire showed that subjects reported lower cognitive workload with haptic modality although both modalities were able to navigate the users along the wall
The Impact of Hypomania on Aerobic Capacity and Cardiopulmonary Functioning—A Case Report
Background: Hypomanic episodes are characterized by increased goal-directed behavior and psychomotor agitation. While the affective, cognitive, and behavioral manifestations of such episodes are well-documented, their physiological influence on aerobic capacity and cardiopulmonary functioning are unknown.Methods: We describe a case report of an individual with schizophrenia who experienced a hypomanic episode while serving as a control participant (wait list) in a single-blind, randomized clinical trial examining the impact of aerobic exercise (AE) on neurocognition in people schizophrenia. As part of the trial, participants completed two scheduled clinical assessments and cardiopulmonary exercise tests (VO2max) at baseline and 12 weeks later at end of study. All participants received standard psychiatric care during the trial. Following a baseline assessment in which he displayed no evidence of mood lability, the subject returned on Week-12 for his scheduled follow-up assessment displaying symptoms of hypomania. He was able to complete the follow-up assessment, as well as third assessment 2 weeks later (Week-14) when his hypomanic symptoms ebbed.Results: While not engaging in AE, the subject's aerobic capacity, as indexed by VO2max, increased by 33% from baseline to Week-12. In comparison, participants engaged in the aerobic exercise training increased their aerobic capacity on average by 18%. In contrast, participants in the control group displayed a small decline (−0.5%) in their VO2max scores. Moreover, the subject's aerobic capacity increased even further by Week-14 (49% increase from baseline), despite the ebbing of his hypomania symptoms at that time. These changes were accompanied by increases in markers of aerobic fitness including peak heart rate, respiratory exchange rate, peak minute ventilation, watts, and peak systolic blood pressure. Resting systolic and diastolic blood pressure, and peak diastolic blood pressure remained unchanged.Conclusions: Our findings suggest that hypomania produce substantial increase in aerobic capacity and that such elevations may remain sustained following the ebbing of hypomanic symptoms. Such elevations may be attributed to increased mobility and goal-directed behavior associated with hypomania, as individuals in hypomanic states may ambulate more frequently, for longer duration, and/or at higher intensity. Our results provide a first and unique view into the impact of hypomania on aerobic capacity and cardiopulmonary functioning
New Modularity of DAP-Kinases: Alternative Splicing of the DRP-1 Gene Produces a ZIPk-Like Isoform
DRP-1 and ZIPk are two members of the Death Associated Protein Ser/Thr Kinase
(DAP-kinase) family, which function in different settings of cell death
including autophagy. DAP kinases are very similar in their catalytic domains but
differ substantially in their extra-catalytic domains. This difference is
crucial for the significantly different modes of regulation and function among
DAP kinases. Here we report the identification of a novel alternatively spliced
kinase isoform of the DRP-1 gene, termed DRP-1β. The
alternative splicing event replaces the whole extra catalytic domain of DRP-1
with a single coding exon that is closely related to the sequence of the extra
catalytic domain of ZIPk. As a consequence, DRP-1β lacks the calmodulin
regulatory domain of DRP-1, and instead contains a leucine zipper-like motif
similar to the protein binding region of ZIPk. Several functional assays proved
that this new isoform retained the biochemical and cellular properties that are
common to DRP-1 and ZIPk, including myosin light chain phosphorylation, and
activation of membrane blebbing and autophagy. In addition, DRP-1β also
acquired binding to the ATF4 transcription factor, a feature characteristic of
ZIPk but not DRP-1. Thus, a splicing event of the DRP-1 produces a ZIPk like
isoform. DRP-1β is highly conserved in evolution, present in all known
vertebrate DRP-1 loci. We detected the corresponding mRNA and
protein in embryonic mouse brains and in human embryonic stem cells thus
confirming the in vivo utilization of this isoform. The
discovery of module conservation within the DAPk family members illustrates a
parsimonious way to increase the functional complexity within protein families.
It also provides crucial data for modeling the expansion and evolution of DAP
kinase proteins within vertebrates, suggesting that DRP-1 and ZIPk most likely
evolved from their ancient ancestor gene DAPk by two gene duplication events
that occurred close to the emergence of vertebrates
Serum amyloid A (SAA): a novel biomarker for uterine serous papillary cancer
BACKGROUND: Uterine serous papillary carcinoma (USPC) is a biologically aggressive variant of endometrial cancer. We investigated
the expression of Serum Amyloid A (SAA) and evaluated its potential as a serum biomarker in USPC patients.
METHODS: SAA gene and protein expression levels were evaluated in USPC and normal endometrial tissues (NEC) by real-time PCR,
immunohistochemistry (IHC), flow cytometry and by a sensitive bead-based immunoassay. SAA concentration in 123 serum samples
from 51 healthy women, 42 women with benign diseases, and 30 USPC patients were also studied.
RESULTS: SAA gene expression levels were significantly higher in USPC when compared with NEC (mean copy number by
RT\u2013PCR\ubc162 vs 2.21; P\ubc0.0002). IHC revealed diffuse cytoplasmic SAA protein staining in USPC tissues. High intracellular levels
of SAA were identified in primary USPC cell lines evaluated by flow cytometry and SAA was found to be actively secreted in vitro.
SAA concentrations (mgml 1) had a median (95% CIs) of 6.0 (4.0\u20138.9) in normal healthy females and 6.0 (4.2\u20138.1) in patients with
benign disease (P\ubc0.92). In contrast, SAA values in the serum of USPC patients had a median (95% CI) of 15.6 (9.2\u201356.2),
significantly higher than those in the healthy group (P\ubc0.0005) and benign group (P\ubc0.0006). Receiver operating characteristics
(ROC) analysis of serum SAA to classify advanced- and early-stage USPC yielded an area under the ROC curve of 0.837
(P\ubc0.0024).
CONCLUSION: SAA is not only a liver-secreted protein but is also a USPC cell product. SAA may represent a novel biomarker for
USPC to assist in staging patients preoperatively, and to monitor early-disease recurrence and response to therapy
Study of cosolvent-induced α-chymotrypsin fibrillogenesis: Does protein surface hydrophobicity trigger early stages of aggregation reaction?
The misfolding of specific proteins is often associated with their assembly into fibrillar aggregates, commonly termed amyloid fibrils. Despite the many efforts expended to characterize amyloid formation in vitro, there is no deep knowledge about the environment (in which aggregation occurs) as well as mechanism of this type of protein aggregation. Alpha-chymotrypsin was recently driven toward amyloid aggregation by the addition of intermediate concentrations of trifluoroethanol. In the present study, approaches such as turbidimetric, thermodynamic, intrinsic fluorescence and quenching studies as well as chemical modification have been successfully used to elucidate the underlying role of hydrophobic interactions (involved in early stages of amyloid formation) in α-chymotrypsin-based experimental system. © 2009 Springer Science+Business Media, LLC
- …