12 research outputs found

    Cortical Processing Related to Intensity of a Modulated Noise Stimulus-a Functional Near-Infrared Study.

    Get PDF
    Sound intensity is a key feature of auditory signals. A profound understanding of cortical processing of this feature is therefore highly desirable. This study investigates whether cortical functional near-infrared spectroscopy (fNIRS) signals reflect sound intensity changes and where on the brain cortex maximal intensity-dependent activations are located. The fNIRS technique is particularly suitable for this kind of hearing study, as it runs silently. Twenty-three normal hearing subjects were included and actively participated in a counterbalanced block design task. Four intensity levels of a modulated noise stimulus with long-term spectrum and modulation characteristics similar to speech were applied, evenly spaced from 15 to 90 dB SPL. Signals from auditory processing cortical fields were derived from a montage of 16 optodes on each side of the head. Results showed that fNIRS responses originating from auditory processing areas are highly dependent on sound intensity level: higher stimulation levels led to higher concentration changes. Caudal and rostral channels showed different waveform morphologies, reflecting specific cortical signal processing of the stimulus. Channels overlying the supramarginal and caudal superior temporal gyrus evoked a phasic response, whereas channels over Broca's area showed a broad tonic pattern. This data set can serve as a foundation for future auditory fNIRS research to develop the technique as a hearing assessment tool in the normal hearing and hearing-impaired populations

    Assessing hearing by measuring heartbeat: The effect of sound level.

    Get PDF
    Functional near-infrared spectroscopy (fNIRS) is a non-invasive brain imaging technique that measures changes in oxygenated and de-oxygenated hemoglobin concentration and can provide a measure of brain activity. In addition to neural activity, fNIRS signals contain components that can be used to extract physiological information such as cardiac measures. Previous studies have shown changes in cardiac activity in response to different sounds. This study investigated whether cardiac responses collected using fNIRS differ for different loudness of sounds. fNIRS data were collected from 28 normal hearing participants. Cardiac response measures evoked by broadband, amplitude-modulated sounds were extracted for four sound intensities ranging from near-threshold to comfortably loud levels (15, 40, 65 and 90 dB Sound Pressure Level (SPL)). Following onset of the noise stimulus, heart rate initially decreased for sounds of 15 and 40 dB SPL, reaching a significantly lower rate at 15 dB SPL. For sounds at 65 and 90 dB SPL, increases in heart rate were seen. To quantify the timing of significant changes, inter-beat intervals were assessed. For sounds at 40 dB SPL, an immediate significant change in the first two inter-beat intervals following sound onset was found. At other levels, the most significant change appeared later (beats 3 to 5 following sound onset). In conclusion, changes in heart rate were associated with the level of sound with a clear difference in response to near-threshold sounds compared to comfortably loud sounds. These findings may be used alone or in conjunction with other measures such as fNIRS brain activity for evaluation of hearing ability

    Cortical fNIRS Responses Can Be Better Explained by Loudness Percept than Sound Intensity.

    Get PDF
    OBJECTIVES Functional near-infrared spectroscopy (fNIRS) is a brain imaging technique particularly suitable for hearing studies. However, the nature of fNIRS responses to auditory stimuli presented at different stimulus intensities is not well understood. In this study, we investigated whether fNIRS response amplitude was better predicted by stimulus properties (intensity) or individually perceived attributes (loudness). DESIGN Twenty-two young adults were included in this experimental study. Four different stimulus intensities of a broadband noise were used as stimuli. First, loudness estimates for each stimulus intensity were measured for each participant. Then, the 4 stimulation intensities were presented in counterbalanced order while recording hemoglobin saturation changes from cortical auditory brain areas. The fNIRS response was analyzed in a general linear model design, using 3 different regressors: a non-modulated, an intensity-modulated, and a loudness-modulated regressor. RESULTS Higher intensity stimuli resulted in higher amplitude fNIRS responses. The relationship between stimulus intensity and fNIRS response amplitude was better explained using a regressor based on individually estimated loudness estimates compared with a regressor modulated by stimulus intensity alone. CONCLUSIONS Brain activation in response to different stimulus intensities is more reliant upon individual loudness sensation than physical stimulus properties. Therefore, in measurements using different auditory stimulus intensities or subjective hearing parameters, loudness estimates should be examined when interpreting results

    VicPROMPT pilot project evaluation report

    No full text
    This report is the final evaluation of the VicPROMPT pilot project. VicPROMPT was based on the research of Professor Tim Draycott and his team who developed The Practical Obstetric Multi-Professional Training (PROMPT) course and successfully introduced it into Southwest England. PROMPT has been associated with evidence of improved perinatal outcomes. The report includes an evaluation of the introduction of the pilot program, and the final 2010-2011 results of the evaluation for the efficiency and effectiveness of VicPROMPT (Victorian version of PROMPT). The outcome measures available for the report include the evaluation of the introduction of the program, the training evaluation data, the results of the Staff Safety Attitudes Questionnaire and clinical data

    Human factors in information technology

    No full text
    BACKGROUND: Current electroencephalogram (EEG)-derived measures provide information on cortical activity and hypnosis but are less accurate regarding subcortical activity, which is expected to vary with the degree of antinociception. Recently, the neurophysiologically based EEG measures of cortical input (CI) and cortical state (CS) have been shown to be prospective indicators of analgesia/antinociception and hypnosis, respectively. In this study, we compared CI and an alternate measure of CS, the composite cortical state (CCS), with the Bispectral Index (BIS) and another recently developed measure of antinociception, the composite variability index (CVI). CVI is an EEG-derived measure based on a weighted combination of BIS and estimated electromyographic activity. By assessing the relationship between these indices for equivalent levels of hypnosis (as quantified using the BIS) and the nociceptive-antinociceptive balance (as determined by the predicted effect-site concentration of remifentanil), we sought to evaluate whether combining hypnotic and analgesic measures could better predict movement in response to a noxious stimulus than when used alone. METHODS: Time series of BIS and CVI indices and the raw EEG from a previously published study were reanalyzed. In our current study, the data from 80 patients, each randomly allocated to a target hypnotic level (BIS 50 or BIS 70) and a target remifentanil level (Remi-0, -2, -4 or -6 ng/mL), were included in the analysis. CCS, CI, BIS, and CVI were calculated or quantified at baseline and at a number of intervals after the application of the Observer's Assessment of Alertness/Sedation scale and a subsequent tetanic stimulus. The dependency of the putative measures of antinociception CI and CVI on effect-site concentration of remifentanil was then quantified, together with their relationship to the hypnotic measures CCS and BIS. Finally, statistical clustering methods were used to evaluate the extent to which simple combinations of antinociceptive and hypnotic measures could better detect and predict response to stimulation. RESULTS: Before stimulation, both CI and CVI differentiated patients who received remifentanil from those who were randomly allocated to the Remi-0 group (CI: Cohen's d = 0.65, 95% confidence interval, 0.48-0.83; CVI: Cohen's d = 0.72, 95% confidence interval, 0.56-0.88). Strong correlations between BIS and CCS were found (at different periods: 0.55 < R-2 < 0.68, P < 0.001). Application of the Observer's Assessment of Alertness/Sedation stimulus was associated with changes in CI and CCS, whereas, subsequent to the application of both stimuli, changes in all measures were seen. Pairwise combinations of CI and CCS showed higher sensitivity in detecting response to stimulation than CVI and BIS combined (sensitivity [99% confidence interval], 75.8% [52.7%-98.8%] vs 42% [15.4%-68.5%], P = 0.006), with specificity for CI and CCS approaching significance (52% [34.7%-69.3%] vs 24% [9.1%-38.9%], P = 0.0159). CONCLUSIONS: Combining electroencephalographically derived hypnotic and analgesic quantifiers may enable better prediction of patients who are likely to respond to tetanic stimulation
    corecore