604 research outputs found

    Movement patterns of cheetahs ( Acinonyx jubatus ) in farmlands in Botswana

    Get PDF
    Botswana has the second highest population of cheetah (Acinonyx jubatus) with most living outside protected areas. As a result, many cheetahs are found in farming areas which occasionally results in human-wildlife conflict. This study aimed to look at movement patterns of cheetahs in farming environments to determine whether cheetahs have adapted their movements in these human-dominated landscapes. We fitted high-time resolution GPS collars to cheetahs in the Ghanzi farmlands of Botswana. GPS locations were used to calculate home range sizes as well as number and duration of visits to landscape features using a time-based local convex hull method. Cheetahs had medium-sized home ranges compared to previously studied cheetah in similar farming environments. Results showed that cheetahs actively visited scent marking trees and avoided visiting homesteads. A slight preference for visiting game farms over cattle farms was found, but there was no difference in duration of visits between farm types. We conclude that cheetahs selected for areas that are important for their dietary and social needs and prefer to avoid human-occupied areas. Improved knowledge of how cheetahs use farmlands can allow farmers to make informed decisions when developing management practices and can be an important tool for reducing human-wildlife conflict

    Social sensing of floods in the UK

    Get PDF
    This is the final version of the article. Available from Public Library of Science (PLoS) via the DOI in this record.“Social sensing” is a form of crowd-sourcing that involves systematic analysis of digital communications to detect real-world events. Here we consider the use of social sensing for observing natural hazards. In particular, we present a case study that uses data from a popular social media platform (Twitter) to detect and locate flood events in the UK. In order to improve data quality we apply a number of filters (timezone, simple text filters and a naive Bayes ‘relevance’ filter) to the data. We then use place names in the user profile and message text to infer the location of the tweets. These two steps remove most of the irrelevant tweets and yield orders of magnitude more located tweets than we have by relying on geo-tagged data. We demonstrate that high resolution social sensing of floods is feasible and we can produce high-quality historical and real-time maps of floods using Twitter

    AI in Production: Video Analysis and Machine Learning for Expanded Live Events Coverage

    Get PDF
    In common with many industries, TV and video production is likely to be transformed by Artificial Intelligence (AI) and Machine Learning (ML), with software and algorithms assisting production tasks that, conventionally, could only be carried out by people. Expanded coverage of a diverse range of live events is particularly constrained by the relative scarcity of skilled people, and is a strong use case for AI-based automation. This paper describes recent BBC research into potential production benefits of AI algorithms, using visual analysis and other techniques. Rigging small, static UHD cameras, we have enabled a one-person crew to crop UHD footage in multiple ways and cut between the resulting shots, effectively creating multi-camera HD coverage of events that cannot accommodate a camera crew. By working with programme makers to develop simple deterministic rules and, increasingly, training systems using advanced video analysis, we are developing a system of algorithms to automatically frame, sequence and select shots, and construct acceptable multicamera coverage of previously untelevised types of event

    Deep Markov Random Field for Image Modeling

    Full text link
    Markov Random Fields (MRFs), a formulation widely used in generative image modeling, have long been plagued by the lack of expressive power. This issue is primarily due to the fact that conventional MRFs formulations tend to use simplistic factors to capture local patterns. In this paper, we move beyond such limitations, and propose a novel MRF model that uses fully-connected neurons to express the complex interactions among pixels. Through theoretical analysis, we reveal an inherent connection between this model and recurrent neural networks, and thereon derive an approximated feed-forward network that couples multiple RNNs along opposite directions. This formulation combines the expressive power of deep neural networks and the cyclic dependency structure of MRF in a unified model, bringing the modeling capability to a new level. The feed-forward approximation also allows it to be efficiently learned from data. Experimental results on a variety of low-level vision tasks show notable improvement over state-of-the-arts.Comment: Accepted at ECCV 201

    Training CNNs with Low-Rank Filters for Efficient Image Classification.

    Get PDF
    We propose a new method for creating computationally efficient convolutional neural networks (CNNs) by using low-rank representations of convolutional filters. Rather than approximating filters in previously-trained networks with more efficient versions, we learn a set of small basis filters from scratch; during training, the network learns to combine these basis filters into more complex filters that are discriminative for image classification. To train such networks, a novel weight initialization scheme is used. This allows effective initialization of connection weights in convolutional layers composed of groups of differently-shaped filters. We validate our approach by applying it to several existing CNN architectures and training these networks from scratch using the CIFAR, ILSVRC and MIT Places datasets. Our results show similar or higher accuracy than conventional CNNs with much less compute. Applying our method to an improved version of VGG-11 network using global max-pooling, we achieve comparable validation accuracy using 41% less compute and only 24% of the original VGG-11 model parameters; another variant of our method gives a 1 percentage point increase in accuracy over our improved VGG-11 model, giving a top-5 center-crop validation accuracy of 89.7% while reducing computation by 16% relative to the original VGG-11 model. Applying our method to the GoogLeNet architecture for ILSVRC, we achieved comparable accuracy with 26% less compute and 41% fewer model parameters. Applying our method to a near state-of-the-art network for CIFAR, we achieved comparable accuracy with 46% less compute and 55% fewer parameters.Microsoft Research PhD Scholarshi

    A Fully Automated Approach to Segmentation of Irregularly Shaped Cellular Structures in EM Images

    Get PDF
    While there has been substantial progress in segmenting natural im-ages, state-of-the-art methods that perform well in such tasks unfortunately tend to underperform when confronted with the different challenges posed by electron microscope (EM) data. For example, in EM imagery of neural tissue, numerous cells and subcellular structures appear within a single image, they exhibit irregular shapes that cannot be easily modeled by standard techniques, and confusing textures clutter the background. We propose a fully automated approach that handles these challenges by using sophisticated cues that capture global shape and texture information, and by learning the specific appearance of object boundaries. We demonstrate that our approach significantly outperforms state-of-the-art techniques and closely matches the performance of human annotators

    Utopia documents: linking scholarly literature with research data

    Get PDF
    Motivation: In recent years, the gulf between the mass of accumulating-research data and the massive literature describing and analyzing those data has widened. The need for intelligent tools to bridge this gap, to rescue the knowledge being systematically isolated in literature and data silos, is now widely acknowledged

    AI-KG: an Automatically Generated Knowledge Graph of Artificial Intelligence

    Get PDF
    Scientific knowledge has been traditionally disseminated and preserved through research articles published in journals, conference proceedings, and online archives. However, this article-centric paradigm has been often criticized for not allowing to automatically process, categorize, and reason on this knowledge. An alternative vision is to generate a semantically rich and interlinked description of the content of research publications. In this paper, we present the Artificial Intelligence Knowledge Graph (AI-KG), a large-scale automatically generated knowledge graph that describes 820K research entities. AI-KG includes about 14M RDF triples and 1.2M reified statements extracted from 333K research publications in the field of AI, and describes 5 types of entities (tasks, methods, metrics, materials, others) linked by 27 relations. AI-KG has been designed to support a variety of intelligent services for analyzing and making sense of research dynamics, supporting researchers in their daily job, and helping to inform decision-making in funding bodies and research policymakers. AI-KG has been generated by applying an automatic pipeline that extracts entities and relationships using three tools:DyGIE++, Stanford CoreNLP, and the CSO Classifier. It then integrates and filters the resulting triples using a combination of deep learning and semantic technologies in order to produce a high-quality knowledge graph. This pipeline was evaluated on a manually crafted gold standard, yielding competitive results. AI-KG is available under CC BY 4.0 and can be downloaded as a dump or queried via a SPARQL endpoint

    Utjecaj sadržaja lijeka i veličine aglomerata na tabletiranje i oslobađanje bromheksin hidroklorida iz aglomerata s talkom pripremljenih kristalokoaglomeracijom

    Get PDF
    The objective of the investigation was to study the effect of bromhexine hydrochloride (BXH) content and agglomerate size on mechanical, compressional and drug release properties of agglomerates prepared by crystallo-co-agglomeration (CCA). Studies on optimized batches of agglomerates (BXT1 and BXT2) prepared by CCA have showed adequate sphericity and strength required for efficient tabletting. Trend of strength reduction with a decrease in the size of agglomerates was noted for both batches, irrespective of drug loading. However, an increase in mean yield pressure (14.189 to 19.481) with an increase in size was observed for BXT2 having BXH-talc (1:15.7). Surprisingly, improvement in tensile strength was demonstrated by compacts prepared from BXT2, due to high BXH load, whereas BXT1, having a low amount of BXH (BXH-talc, 1:24), showed low tensile strength. Consequently, increased tensile strength was reflected in extended drug release from BXT2 compacts (Higuchi model, R2 = 0.9506 to 0.9981). Thus, it can be concluded that interparticulate bridges formed by BXH and agglomerate size affect their mechanical, compressional and drug release properties.Cilj rada bio je praćenje utjecaja sadržaja bromheksidin hidroklorida (BXH) i veličine aglomerata na mehanička svojstva, kompresivnost i oslobađanje ljekovite tvari iz aglomerata pripravljenih kristalokoaglomeracijom (CCA). Optimizirani pripravci aglomerata (BXT1 i BXT2) pripravljeni CCA metodom pokazuju adekvatnu sferičnost i čvrstoću potrebnu za učinkovito tabletiranje. U oba pripravka se smanjenjem veličine aglomerata smanjivala i čvrstoća, neovisno o količini ljekovite tvari. Međutim, povećanje prosječnog tlaka s povećanjem veličine čestica primijećeno je u pripravku BXT2 s omjerom BXH-talk 1:15,7. Iznenađuje da su kompakti pripravljeni iz BXT2, s visokim sadržajem BXH, imali veću vlačnu čvrstoću, dok su BXT1 s niskim sadržajem BXH (BXH-talk, 1:24) imali manju čvrstoću. Veća vlačna čvrstoća imala je za posljedicu produljeno oslobađanje ljekovite tvari iz BXT2 (Higuchijev model, R2 = 0,9506 do 0,9981). Može se zaključiti da mostovi među česticama BXH i veličina aglomerata utječu na njihova mehanička i kompresivna svojstva te na oslobađanje ljekovite tvari
    corecore