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Summary

I We train CNNs with composite layers of oriented low-rank filters, of
which the network learns the most effective linear combination

I In effect our networks learn a basis space for filters, based on
simpler low-rank filters

I We propose an initialization for composite layers of heterogeneous
filters, to train such networks from scratch

I Our models are faster and use less parameters
I With a small number of full filters, our models also generalize better

Previous Work: Separable (Factorized) Convolution
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I Explicitly approximate low-rank factorization of trained CNN’s
full-rank filter

I Use sequential conv. layers with filters of differing orientation [3, 2].
I O(d× [h×w× c])→ O(d× [h×m] +m[w× c]) (for each effective filter)
I However, in most CNNs, d ≥ m� c, so this isn’t much faster
I All previous methods approximated a pre-trained model!
I With our initialization, we can train these networks from scratch
I VGG-11 GMP Separable 88% top-5 accuracy on ILSVRC

Composite Layer - Initialization

I Incorrect initialization scales signal by β, for L layers, this becomes a
scaling of βL [1]

I If β > 1, βL →∞, training diverges, if β < 1, βL → 0, training stalls

d1

concat

d [1]

d [2]

d [N]

… d

h [1]

w [1]

w [2]
h [2]

w [N]

h [N]

d [1] filters

d [2] filters

d [N] filters

split

c

c

W

H

*

…
…

*

*

…
…

c c

W

H

W

H

W

H

W

H

I When considering the initialization of composite layers
(concatenated layers), must consider all layers for number of
outgoing/incoming connections. For example, for a ReLU:
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√
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√
2∑

w[i]h[i]d[i]
.

Proposed Method: Learning a Basis Space for Filters

I Intuition: Can a CNN learn to combine low-rank filters optimally
during training?

I We structure our CNNs to learn a linear combination of low-rank
filters, i.e. a basis space for filters:
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I A set of filters of different shape (similar to ‘Inception’, but low-rank
and of different orientation [4])

I On the following layer, use d × [1× 1× m] filters to linearly combine
I No activation function between these two layers
I O(d × [h× w× c])→ O(dm× [h× w× c]) (for each effective filter)

Training CNNs with Low-Rank Filters
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(a) A full rank convolutional layer.
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(b) Our method, a learned basis space of filters that are rectangular in
the spatial domain and oriented horizontally and vertically.
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(c) Our method, a learned basis space of rectangular filters and
square filters. Filters of other shapes are also possible.
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(d) Fig. (b), without explicit linear
combination.
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(e) Fig. (c), without explicit linear
combination.

I Activation function is after the last layer in each configuration
I Shape of learned filters is a full w× h× c, but low-rank
I What can be effectively learned is limited by the number and

complexity of the basis filters

VGG ILSVRC Results

Layer VGG-11 GMP GMP-SF GMP-LR GMP-LR-2X GMP-LR-JOIN GMP-LR-LDE GMP-LR-JOIN-WFULL
conv1 3×3, 64 1×3, 64 3×1, 32 ‖ 1×3, 32 3×1, 64 ‖ 1×3, 64 3×1, 32 ‖ 1×3, 32 3×1, 24 ‖ 1×3, 24 ‖ 3×3, 16

3×1, 64 1×1, 64 1×1, 32 1×1, 64
ReLU

2×2 maxpool, /2
conv2 3×3, 128 1×3, 128 3×1, 64 ‖ 1×3, 64 3×1, 128 ‖ 1×3, 128 3×1, 64 ‖ 1×3, 64 3×1, 48 ‖ 1×3, 48 ‖ 3×3, 32

3×1, 128 1×1, 128 1×1, 64 1×1, 128
ReLU

2×2 maxpool, /2
conv3 3×3, 256 1×3, 256 3×1, 128 ‖ 1×3, 128 3×1, 256 ‖ 1×3, 256 3×1, 128 ‖ 1×3, 128 3×1, 96 ‖ 1×3, 96 ‖ 3×3, 64

3×1, 256 1×1, 256 1×1, 128 1×1, 256
ReLU

3×3, 256 1×3, 256 3×1, 128 ‖ 1×3, 128 3×1, 256 ‖ 1×3, 256 3×1, 128 ‖ 1×3, 128 3×1, 96 ‖ 1×3, 96 ‖ 3×3, 64
3×1, 256 1×1, 256 1×1, 128 1×1, 256

ReLU
2×2 maxpool, /2

conv4 3×3, 512 1×3, 512 3×1, 256 ‖ 1×3, 256 3×1, 512 ‖ 1×3, 512 3×1, 256 ‖ 1×3, 256 3×1, 192 ‖ 1×3, 192 ‖ 3×3, 128
3×1, 512 1×1, 512 1×1, 256 1×1, 512

ReLU
3×3, 512 1×3, 512 3×1, 256 ‖ 1×3, 256 3×1, 512 ‖ 1×3, 512 3×1, 256 ‖ 1×3, 256 3×1, 192 ‖ 1×3, 192 ‖ 3×3, 128

3×1, 512 1×1, 512 1×1, 256 1×1, 512
ReLU

2×2 maxpool, /2
conv5 3×3, 512 1×3, 512 3×1, 256 ‖ 1×3, 256 3×1, 512 ‖ 1×3, 512 3×1, 256 ‖ 1×3, 256 3×1, 192 ‖ 1×3, 192 ‖ 3×3, 128

3×1, 512 1×1, 512 1×1, 256 1×1, 512
ReLU

3×3, 512 1×3, 512 3×1, 256 ‖ 1×3, 256 3×1, 512 ‖ 1×3, 512 3×1, 256 ‖ 1×3, 256 3×1, 192 ‖ 1×3, 192 ‖ 3×3, 128
3×1, 512 1×1, 512 1×1, 256 1×1, 512

ReLU
2×2 maxpool, /2 global maxpool

fc6 72 × 512 × 4096 512 × 4096
ReLU

fc7 4096 × 4096
ReLU

fc8 4096 × 1000
softmax

VGG Model Architectures. Here “3×3, 32” denotes 32 3×3 filters,
“/2” denotes stride 2, fc denotes fully-connected, and ‖ denotes a
concatenation within a composite layer.
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Baseline Networks Our Results

Network Stride Multiply-Acc. ×109 Param. ×107 T1A T5A
vgg-11 1 7.61 13.29 0.649 0.862
gmp 1 7.51 3.22 0.685 0.887
gmp-sf 1 6.53 2.97 0.673 0.879
gmp-lr-join-wfull 1 6.34 3.72 0.704 0.897
gmp-lr-join 1 3.85 2.73 0.675 0.880
gmp-lr-2x 1 3.14 3.13 0.693 0.889
gmp-lr 1 2.52 2.61 0.676 0.880
gmp-lr-lde 2 1.02 2.64 0.667 0.875

I Our models have significantly fewer FLOPS than the baseline
network, in the case of ‘gmp-lr-2x’ by a factor of almost 60%, while
slightly lowering error.

I The ‘gmp-lr’ and ‘gmp-lr-join’ networks have the same accuracy,
showing that an explicit linear combination layer is unnecessary.

I Applying our method to an improved version of VGG-11 network
using global max-pooling, we achieve comparable validation
accuracy using 41% less compute and only 24% of the original
VGG-11 model parameters.

I A mixture of full and low-rank filters gives a 1 percentage point
increase in accuracy over our improved VGG-11 model, giving a
top-5 center-crop validation accuracy of 89.7% while reducing
computation by 16% relative to the original VGG-11 model.

GoogLeNet ILSVRC Results
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Baseline Our Results

Network Multiply-Acc. ×109 Test Param. ×106 T1A T5A
GoogLeNet 1.59 5.97 0.677 0.883
lr 1.18 3.50 0.673 0.880
lr-conv1 0.84 3.42 0.659 0.870

I Applying our method to the optimized GoogLeNet architecture for
ILSVRC, we achieved comparable accuracy with 26% less compute
and 41% fewer model parameters.

I Google added similar low-rank filters with Inception v3 after our
publication, showing an increase in accuracy with lower
computation [5]

State-of-the-Art Models (at time of ICLR 2016 submission)
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