Training CNNs with Low-Rank Filters for Efficient Image Classification Yani Ioannou¹ Duncan Robertson² Jamie Shotton² Roberto Cipolla¹ Antonio Criminisi² ¹University of Cambridge, ²Microsoft Research, Cambridge

Summary

- ► We train CNNs with composite layers of oriented low-rank filters, of which the network learns the most effective linear combination
- In effect our networks learn a basis space for filters, based on simpler low-rank filters
- We propose an initialization for composite layers of heterogeneous filters, to train such networks from scratch
- Our models are faster and use less parameters
- ▶ With a small number of full filters, our models also generalize better

Previous Work: Separable (Factorized) Convolution

- Explicitly approximate low-rank factorization of trained CNN's full-rank filter
- ▶ Use sequential conv. layers with filters of differing orientation [3, 2].
- ▶ $\mathcal{O}(d \times [h \times w \times c]) \rightarrow \mathcal{O}(d \times [h \times \mathbf{m}] + \mathbf{m}[w \times c])$ (for each effective filter)
- However, in most CNNs, $d \ge m \gg c$, so this isn't much faster
- All previous methods approximated a pre-trained model!
- ▶ With our initialization, we can train these networks from scratch
- VGG-11 GMP Separable 88% top-5 accuracy on ILSVRC

Composite Layer - Initialization

- ▶ Incorrect initialization scales signal by β , for L layers, this becomes a scaling of β^L [1]
- ▶ If $\beta > 1$, $\beta^L \to \infty$, training diverges, if $\beta < 1$, $\beta^L \to 0$, training stalls

When considering the initialization of composite layers (concatenated layers), must consider all layers for number of outgoing/incoming connections. For example, for a ReLU:

$$\sigma = \sqrt{\frac{2}{n_{\text{out}}}} = \sqrt{\frac{2}{\sum w^{[i]} h^{[i]} d^{[i]}}}.$$

What can be effectively learned is limited by the number and complexity of the basis filters

Microsoft

G-11	GMP	GMP-SF	G	MP-LR		GMP-L	_R-2X	GMP-LR-JOIN	GMP-LR-LDE	GMP-LR-JOIN-WFULL
3×3, 64		1×3, 64	3×1,3	82 ∥ 1×3,	32	3×1, 64 ∥	1×3, 64	3×1, 32	1×3, 32	3×1, 24 1×3, 24 3×3, 16
		3×1, 64						1×1, 64	1×1, 32	1×1, 64
							ReLU			
						2×2	maxpool, /	/2		
8×3, 128		1×3, 128	3×1,6	64 ∥ 1×3,	64	3×1, 128 ∥	1×3, 128	3×1, 64	1×3, 64	3×1, 48 1×3, 48 3×3, 32
		3×1, 128						1×1, 128	1×1, 64	1×1, 128
						•	ReLU		-	
						2×2	maxpool, /	/2		
3×3, 256		1×3, 256	3×1, 12	28 1×3,	128	3×1, 256 ∥	1×3, 256	3×1, 128	1×3, 128	3×1, 96 1×3, 96 3×3, 64
		3×1, 256						1×1, 256	1×1, 128	1×1, 256
							ReLU			
3×3, 256		1×3, 256	3×1, 12	28 ∥ 1×3,	128	3×1, 256 ∥	1×3, 256	3×1, 128	1×3, 128	3×1, 96 1×3, 96 3×3, 64
		3×1, 256						1×1, 256	1×1, 128	1×1, 256
							ReLU			
						2×2	maxpool, /	2		
8×3, 512		1×3, 512	3×1, 25	6 ∥ 1×3,	256	3×1, 512 ∥	1×3, 512	3×1, 256 ∥	1×3, 256	$3 \times 1, 192 \parallel 1 \times 3, 192 \parallel 3 \times 3, 123$
		3×1, 512						1×1, 512	1×1, 256	1×1, 512
							ReLU			
3×3, 512		1×3, 512	3×1, 25	66 ∥ 1×3,	256	3×1, 512 ∥	1×3, 512	3×1, 256 ∥	1×3, 256	3×1, 192 ∥ 1×3, 192 ∥ 3×3, 12
		3×1, 512						1×1, 512	1×1, 256	1×1, 512
							ReLU			
						2×2	maxpool, /	/2		
3×3, 512		1×3, 512	3×1, 25	66 ∥ 1×3,	256	3×1, 512 ∥	1×3, 512	3×1, 256	1×3, 256	3×1, 192 ∥ 1×3, 192 ∥ 3×3, 12
		3×1, 512						1×1, 512	1×1, 256	1×1, 512
							ReLU	1		1
3×3, 512		1×3, 512	3×1, 25	6 ∥ 1×3,	256	3×1, 512 ∥	1×3, 512	3×1, 256 ∥	1×3, 256	3×1, 192 1×3, 192 3×3, 12
		3×1, 512						1×1, 512	1×1, 256	1×1, 512
							ReLU			
xpool, /2							globa	l maxpool		
2×4096							512	× 4096		
							ReLU			
						409	96 × 4096			
							ReLU			
						409	96 × 1000			
							coftmax			

rk	Stride	Multiply-Acc. $\times 1$	09	Param. $\times 10^7$	T1A	T5A
	1	7.6	51	13.29	0.649	0.862
	1	7.5	51	3.22	0.685	0.887
f	1	6.4	53	2.97	0.673	0.879
-join-wfull	1	6.3	34	3.72	0.704	0.897
-join	1	3.8	85	2.73	0.675	0.880
-2x	1	3.1	14	3.13	0.693	0.889
	1	2.5	52	2.61	0.676	0.880
-lde	2	1.0	02	2.64	0.667	0.875

top-5 *center-crop* validation accuracy of 89.7% while reducing computation by 16% relative to the original VGG-11 model.

- computation [5]

318	116	-0		me
20%	x	• ale	exne	et
18% -				
16% -				
14% - цол 2 - 12% -			•	vgg-gr • goo
10% -				
8% -				
6% -				
			10 ⁹	1

References

[1]	Kaiming He et a classification". pp. 1026–1034.
[2]	Max Jaderberg Networks with L
[3]	Franck Mamale Neural Network
[4]	Christian Szege Conference on
[5]	Christian Szege preprint arXiv:1

More Information

UNIVERSITYOF CAMBRIDGE

GoogLeNet ILSVRC Results

Applying our method to the optimized GoogLeNet architecture for ILSVRC, we achieved comparable accuracy with 26% less compute and 41% fewer model parameters.

Google added similar low-rank filters with Inception v3 after our publication, showing an increase in accuracy with lower

-Art Models (at time of ICLR 2016 submission)

al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet In: Proceedings of the IEEE International Conference on Computer Vision. 2015,

Andrea Vedaldi, and Andrew Zisserman. "Speeding up Convolutional Neural Low Rank Expansions." In: British Machine Vision Conference. 2014. et and Christophe Garcia. "Simplifying convnets for fast learning". In: Artificial rks and Machine Learning–ICANN 2012. Springer, 2012, pp. 58–65. gedy et al. "Going deeper with convolutions". In: *Proceedings of the IEEE* Computer Vision and Pattern Recognition. 2015, pp. 1–9. gedy et al. "Rethinking the Inception Architecture for Computer Vision". In: arXiv *1512.00567* (2015).

