6,190 research outputs found

    A flight investigation of the wake turbulence alleviation resulting from a flap configuration change on a B-747 aircraft

    Get PDF
    A flight test investigation was conducted to evaluate the effects of a flap configuration change on the vortex wake characteristics of a Boeing 747 (B-747) aircraft as measured by differences in upset response resulting from deliberate vortex encounters by a following Learjet aircraft and by direct measurement of the velocities in the wake. The flaps of the B-747 have a predominant effect on the wake. The normal landing flap configuration produces a strong vortex that is attenuated when the outboard flap segments are raised; however, extension of the landing gear at that point increases the vortex induced upsets. These effects are in general agreement with existing wind tunnel and flight data for the modified flap configuration

    Some measurements of the dynamic and static stability of two blunt-nosed, low-fineness- ratio bodies of revolution in free flight at mequal4

    Get PDF
    Dynamic and static stability of two blunt nosed low fineness ratio bodies of revolution in free flight - ballistic

    Chemically Accurate Calculations of Rate Constants of Spin Trap-Hydroxyl Radical Addition Reactions

    Get PDF
    The DMPO type spin trap 5,5-Dimethyl-1-pyrroline N-oxide (DMPO) and the exceptionally similar spin trap 2-ethoxycarbonyl-2-methyl-3,4-dihydro-2H-pyrrole-l-oxide (EMPO) are widely studied in computational and theoretical works. This particular study examines the addition reactions that both these molecules undergo with the carcinogenic hydroxyl radical. This work used a relatively new approximation method, called the correlation consistent composite approach or ccCA, for carrying out quantum mechanical calculations to give the free energies of the products and reactants of the reactions. The free energies are to be used to extrapolate the rate constants of the reactions from the Arrhenius equation. Though both the spin traps studied have been widely examined and assessed in both theoretical and experimental work, accurately calculated rate constants have not been previously obtained using computational methods. The results obtained here will help to assess the efficiency and the accuracy of the ccCA method, as well as lead to the design of better, more novel spin traps

    SAtlas: Spherical Versions of the Atlas Stellar Atmosphere Program

    Full text link
    Context: The current stellar atmosphere programs still cannot match some fundamental observations of the brightest stars, and with new techniques, such as optical interferometry, providing new data for these stars, additional development of stellar atmosphere codes is required. Aims: To modify the open-source model atmosphere program Atlas to treat spherical geometry, creating a test-bed stellar atmosphere code for stars with extended atmospheres. Methods: The plane-parallel Atlas has been changed by introducing the necessary spherical modifications in the pressure structure, in the radiative transfer and in the temperature correction. Results: Several test models show that the spherical program matches the plane-parallel models in the high surface gravity regime, and matches spherical models computed by Phoenix and by MARCS in the low gravity case.Comment: 10 pages, 10 figures, Accepted for publication in A&
    corecore