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ABSTRACT 

 

Composite Quantum Chemistry Calculations of Spin Traps and Reaction Products 

 

By  

 

Hayden Bray Short 

 

 

The DMPO type spin trap 5,5-Dimethyl-1-pyrroline N-oxide (DMPO) and the exceptionally 

similar spin trap 2-ethoxycarbonyl-2-methyl-3,4-dihydro-2H-pyrrole-l-oxide (EMPO) are widely 

studied in computational and theoretical works. This particular study examines the addition 

reactions that both these molecules undergo with the carcinogenic hydroxyl radical. This work 

used a relatively new approximation method, called the correlation consistent composite 

approach or ccCA, for carrying out quantum mechanical calculations to give the free energies of 

the products and reactants of the reactions. The free energies are to be used to extrapolate the rate 

constants of the reactions from the Arrhenius equation. Though both the spin traps studied have 

been widely examined and assessed in both theoretical and experimental work, accurately 

calculated rate constants have not been previously obtained using computational methods. The 

results obtained here will help to assess the efficiency and the accuracy of the ccCA method, as 

well as lead to the design of better, more novel spin traps.  
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CHAPTER 1 

INTRODUCTION  

 

 A radical is a chemical species containing one or more unpaired electrons.[1] “Free 

radicals” are generally defined in the same way, but to be more precise free radicals are radical 

species that can exist independently. There are copious amounts of different types of radicals that 

exist, and they may be generally classified by the atom on which the unpaired spin, or electron, is 

localized. Radicals may be formed from many different types of chemical compounds containing 

different types of elements. Compounds made from a central metal atom, like tin and lead, have 

been found to form free radicals when surrounded by ligands.[2] Cellular activity in biological 

systems causes free radicals to be formed in humans very regularly.[3] Different radicals are 

formed in the body of humans by normal processes and external influences, and reactive radical 

species are created regularly in small amounts in the body by way of aerobic cellular 

processes.[4] Free radicals in the body are not generally beneficial to humans, however.  

 Reactive oxygen species are oxygen-based radicals that are reactive enough to modify 

protein or DNA molecules permanently or temporarily changing cellular activity.[5] Reactive 

oxygen species include superoxide, peroxide, and hydroxyl radicals.[5] Due to these radicals 

being present in the body they have been linked to a number of biological phenomena that have 

negative effects. Carcinogenesis, mutation, degenerative diseases, inflammation, aging, and other 

diseases have been found to have reactive oxygen species involved in the development 

process.[6] Reactive oxygen species have also been found to be involved in the development of 

melanoma.[5] The oxidation of nucleic acids is caused by reactive oxygen species and has been 

linked to neurological diseases, atherosclerosis, and caner.[7] One can see that reactive oxygen 
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species cause a significant number of problems in the human body. This has driven research to 

find the cause of production of reactive oxygen species in the human body.  

 

Generation of Hydroxyl Radicals 

 Cellular and biological processes produce radicals and reactive oxygen species regularly 

in the body.[3, 4] However, problems occur in cells and biological systems when the number of 

radicals produced is too copious due to the radicals oxidizing biomolecules.[4] The Fenton 

Reaction has been determined to be the main cause of overproduction of radicals in cells.[4] The 

Fenton Reaction produces the hydroxyl radical (•OH); this radical is very reactive and leads to 

the formation of other radicals. The hydroxyl radical has great potential to oxidize biomolecules 

and is a very problematic radical in the body. The explanation for why the hydroxyl radical is 

overproduced in cells is in the chemistry of the Fenton Reaction.   

 The Fenton Reaction is a reaction between iron (II) and H2O2 in which iron is oxidized 

and H2O2 is split. The general reaction is [8]:  

                         (1-1) 

Nevertheless, other redox active metal ions, such as Cu
+
, can reduce hydrogen peroxide in this 

way.[9] Fenton first discovered the oxidative properties of iron and ferric ions in 1876 [10], and 

Fenton’s first publication regarding mechanisms of iron-mediated oxidation was in 1894.[11] 

Fenton was not the one who purposed the reaction’s significance in biological systems, however. 

From 1932-1934 Haber, Weiss, and Willstäter proposed the involvement of the free hydroxyl 

radicals resulting from the iron (II)/H2O2 system of reactions.[8] It is now known and widely 

accepted that the Fenton Reaction and Fenton Chemistry are of great significance in biological 

systems in the formation of cancer and cancerous cells. 
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 The Fenton Reaction occurs in the human body when there is an over concentration of 

iron in the body. However, the hemoglobin complex in blood cells is formed by iron and iron has 

been deemed bio-essential in aerobic life.[4] Radical-induced DNA damage in cells occurs at the 

phosphate backbone and nucleotide bases.[9] Positively charged metal ions may localize near the 

phosphate backbone of DNA, and when H2O2 is near localized ions that are redox active, like 

iron, the Fenton Reaction takes place.[9] The production of reactive species in close proximity to 

the DNA causes DNA damage due to reactions with these species.[9] 

 Radicals may also be formed by multiple different methods in solution so that researchers 

may study them. Of course, the Fenton Reaction that takes place in the body can be replicated in 

the lab to produce radicals. There are other methods of producing hydroxyl radicals for study, 

however. One of those methods is the photolysis of hydrogen peroxide. The photolysis of H2O2 

was first studied by Baxendale and Wilson.[12] They reported that it took one Einstein of 

incident 254 nm UV radiation to decompose 1 mol of H2O2.[12] The photolysis yields 2 mol of 

hydroxyl radical with the general reaction being [13]:  

              (1-2) 

Other hydroperoxides can generate the hydroxyl radical, but the mechanism is generally the 

same.[13]  

 Another method in which hydroxyl radicals may be formed in solution involves 

potassium nitrate. First, the peroxynitrite ion is formed from the UV irradiation of alkaline nitrate 

crystals.[14] Plumb and Edwards found that the peroxynitrite ion is the primary product when 

solid nitrates are exposed 254 nm UV light.[15] The peroxynitrite is then added to an aqueous 

solution of a neutral pH where the hemolytic cleavage of the peroxy bond produces the hydroxyl 

radical and nitrogen dioxide.[16] The general reaction in aqueous solution is [16]:  
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          (1-3) 

The hydroxyl radical has a very high rate constant that is approximately 10
9
 dm

3
mol

-1
s

-1
 

for reactions with many species found in biological systems.[17] One can see from the extremely 

high rate constant that the hydroxyl radical is very reactive. The reactions of hydroxyl radicals 

may be classified into three categories: electron transfer, hydrogen abstraction, and addition 

reactions. Organic species can react with hydroxyl radicals in each of these reactions and 

inorganic species can even react with hydroxyl radicals by some of them.  

 

Reactions of Hydroxyl Radicals 

 Electron transfer reactions with hydroxyl radicals are relatively simple. The name of the 

reaction explains how the reaction wonderfully. As with every reaction involving hydroxyl 

reactions, electron transfer reactions happen between organic species and hydroxyl radicals.[18] 

An example of this is the reaction of the azide ion and hydroxyl radicals [18]:  

   
              (1-4) 

However, the electron transfer reaction can take place between hydroxyl radicals and inorganic 

species as well.[19] Species such as Fe(II), As(III), and Cu(I) can undergo single electron 

oxidations to react with hydroxyl radicals.[19] 

 Hydroxyl radicals can also undergo hydrogen abstraction reactions with most organic 

compounds, but the hydrogen abstraction reaction does not occur with inorganic species. Some 

of the most common types of hydrogen abstraction reactions are those between alcohols and 

hydroxyl radicals as alcohols are often used to scavenge radicals.[18] An example of the reaction 

between hydroxyl radicals and alcohols is that between tert-butanol and the hydroxyl radical 

[18]:  
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                                  (1-5) 

However, alcohols are not the only hydrocarbons and organic species that react with the 

hydroxyl radicals. Halocarbons with at least one hydrogen are able to undergo hydrogen 

abstraction reactions with hydroxyl radicals.[20] These types of halocarbons are of interest as 

possible replacements for refrigerants, lubricants, solvents, fire suppressants, and other 

applications.[20]  

 The last type of reaction that hydroxyl radicals participate in is the addition reaction. This 

type of reaction takes place mainly between hydroxyl radicals and aromatic or unsaturated 

aliphatic species. Addition reactions generally produce hydroxycyclohexadienyl-type 

radicals.[21] The general reaction scheme for the addition reaction is as follows [41]: 

 

 

 

(1-6) 

The addition reactions involving hydroxyl radicals have become very important in recent 

research in many different fields. These reactions are involved in environmental pollutants 

arising from the burning of fossil fuels.[21] The addition reaction is the reaction that takes place 

with the various bases found in DNA.[22] It has been experimentally observed that hydroxyl 

radicals can react with all the various bases found in DNA and form stable products.[23, 24] 

Once the radicals react with the DNA bases the DNA is damaged and, if the DNA repair 

enzymes can not repair the DNA, the cell either dies or becomes cancerous.[9] The addition 

reaction is probably most important radical reaction in the research fields of detecting and 
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studying radicals. This is because it is addition reactions that are involved in spin trapping to 

stabilize radicals so that they may be studied.[25]  

Spin Traps 

 Researchers must study radicals to understand how they participate in biological 

processes and cause damage to biomolecules. However, the high reactivity of hydroxyl and other 

types of radicals causes them to have extremely short lifetimes. The short lifetimes of radicals 

cause problems for research and have led to scientists using indirect means to study radicals. 

There are various means of studying radicals, but the most commonly used technique for 

studying radicals is Electron Spin Resonance (ESR)/Electron Paramagnetic Resonance (EPR) 

Spectroscopy.[26] With any method used to study radicals there must be some way to extend the 

life of radicals or produce radicals that are more stable. The most direct way of detecting and 

stabilizing radicals for ESR/EPR is spin trapping.[27] Spin trapping involves the addition of a 

primary free radical across the double bond of a diamagnetic compound to form a radical adduct 

more stable than the original radical.[27] The compounds that form the radical adduct with the 

original radical are referred to as spin traps [28], hence the name “spin trapping.”  

 Spin traps were first developed because of innovations that were needed in detection and 

characterization of free radicals.[29] The idea of spin traps originated in the published works of 

Iwamura and Inamoto that displayed the reaction of cyano radicals and spin traps that formed a 

stable adduct.[30, 31] The first propositions for the uses of the addition reactions contained in the 

papers of Iwamura and Inamoto were made by Janzen and Blackburn.[28, 32] Since the 

discovery of spin traps, research has improved methods of detecting and characterizing radicals 

while also making more sophisticated and effective spin traps. Spin traps have continued to 

improve and be used by researchers since their discovery. Biochemists have been using spin 
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traps for their intended purposes in experimentation for a number of years.[33-35] Spin traps 

have been found to trap an array of different radicals over years of experimental research. Some 

spin traps that have been used primarily for biological radicals have even been found to possess 

the ability to trap inorganic radicals.[36] Research in spin traps has come a long way since their 

discovery. Publications now show that spin traps may be divided into two main classes: PBN-

type and DMPO-type.[37] PBN-type spin traps are linear where as the DMPO-type of radicals 

are cyclic.[37] PBN-type spin traps have rings in the structure, but the base of the structure and 

site at which radicals react is part of a linear structure.[44] In DMPO-type spin traps the radicals 

add directly to the ring and the ring is the base of the structure.[37] The following figure shows 

the basic structure and addition reactions of both types of spin traps [41, 44]: 

 

 

 

 

Figure 1. PBN-type and DMPO-type spin traps and their reactions.[41, 44] 
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Both classes are nitrones, but the PBN-type of nitrones are not as researched and are not as well 

characterized as the DMPO-type of spin traps. 

 Though PBN-type spin traps are not as well studied and researched as DMPO-type spin 

traps, there has been several PBN-type spin traps that have been successfully synthesized. Some 

of the PBN-types to be synthesized are  -substituted methoxy, amino, mercapto, and cyano 

nitrones.[38, 39] There have also been some  -phosphorylated PBN-type nitrones to be 

successfully synthesized.[40] There are more DMPO-type nitrones than PBN-type. Some of the 

DMPO-type of spin traps known to be susceptible to reaction with the hydroxyl radical includes: 

5, 5-Dimethyl-1-pyrroline N-oxide (DMPO) [41], 2-ethoxycarbonyl-2-methyl-3, 4-dihydro-2H-

pyrrole-l-oxide (EMPO) [42], 5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-oxide (BMPO or 

BocMPO) [41, 43], 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) [41], 

among other derivatives similar to these spin traps.[41] Both types of spin traps have spin 

trapping qualities that scientist desire, but both types of spin traps do have their flaws. PBN-type 

spin traps are limited in their ability to distinguish among radicals.[37] DMPO-type spin traps 

are limited in their ability to produce stable adducts and their overall spin trapping 

efficiency.[37]  
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Chapter 2  

QUANTUM MECHANICS 

 

The Schrödinger Equation  

 At the end of the nineteenth century, many scientists believed that all essential 

discoveries had been made and all that remained was the clearing up of a few minor details.[45] 

Classical mechanics was sufficient at describing macroscopic particles and problems.[26] 

However, due to the deterministic nature of classical mechanics, problems arise when 

microscopic problems and systems are evaluated. It was not until the advent of quantum 

mechanics that molecular and atomic systems could be evaluated.[45] Prior to quantum 

mechanics, chemistry was principally an empirical science.[46] It was not until some key 

experiments showed conflict in the results compared to the classical mechanic predictions that 

scientists began to believe that there was much that had yet to discovered in the physical 

world.[46]  

 There were two different kinds of experiments that were in conflict with classical 

mechanic predictions. The two classes of experiments were ones that found light could not be 

described singularly using wave theory and ones that found particles exhibited wave like 

behavior.[46] The two phenomena that showed the particle nature in light were black body 

radiation and the photoelectric effect.[45-47] Black body radiation could not be described using 

classical mechanics as the predictions became less and less accurate as observation progressed 

through the UV region of light.[45] Max Planck used what is now referred to as his “quantum 

postulate” to describe black body radiation.[45] In this postulate, Planck showed that energy 

exists in discrete states or “bundles,” and the exchange of energy was quantized.[45, 47] Albert 
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Einstein then used Planck’s quantum postulate to describe the photoelectric effect.[45] By 

viewing energy as existing in quantized states, Einstein related the kinetic energy of electrons 

ejected from metals being struck by light to the frequency of the incident light waves.[45]  

 Moreover, some of the phenomena observed showing the wave like behavior of particles 

were atomic spectra and electron diffraction.[45, 46] Niels Bohr first attempted to explain the 

atomic emission spectra. He did so by applying Planck’s quantum postulate and developing a 

classical model of the hydrogen atom in which electrons were seen as orbiting the nucleus.[46] 

Bohr’s theory of the atom was excellent at describing the emission spectra of the hydrogen atom 

and other one-electron atoms, but it failed to sufficiently describe the spectra of atoms with any 

more electrons.[46] This showed that while Bohr’s theory was good and made use of the proper 

principles, it was ultimately incomplete.[46] Electron diffraction is an example of particles 

behaving like a wave and Louis de Broglie was the first to postulate why particles can behave in 

this way.[45] Though no experimentation had shown wave-particle duality in matter, de Broglie 

postulated that just as light can behave as a particle and wave in certain instances so could 

matter.[45, 46, 48] Werner Heisenberg realized de Broigle’s postulate had a consequence that he 

named the uncertainty principle.[45,46] The uncertainty principle originally only observed the 

momentum and position of a particle and had the following forms [45, 46]:  

 
      

 

 
 

(2-1) 

The uncertainty principle is a consequence of wave-particle duality and shows that the 

momentum and positions of a particle cannot be simultaneously measured to exactness. 

Contradicting phenomena and postulates like the uncertainty principle show that classical 

mechanics cannot explain the microscopic and a better form of mechanics was needed; thus, 

quantum mechanics was born.  
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 The general quantum hypothesis was first formulated, independently, by Werner 

Heisenberg and Erwin Schrödinger in 1925.[45] At first glance the two look different, but 

Schrödinger showed the two to be mathematically equivalent.[50] Chemical study generally 

tends to use the Schrödinger version that uses differential equations rather than matrix algebra. 

Quantum mechanics suggests that a function exists called a wave or state function that explains a 

quantum mechanical system.[45-47, 49] Any information about a quantum mechanical system 

may be derived from the wave function for the system and the function is represented by the 

symbol  .[45-47 49] A quantum mechanical system evolves through time according to the time-

dependent Schrödinger equation [50-53]: 

   

 

       

  
 
   

  
                      

(2-2) 

where m represemts the mass of the particle,   is the reduced Planck’s constant equal to h/2π, 

and    is the Laplacian operator. The Laplacian operator is given as [50-53]: 

 
   

  

   
 

  

   
 

  

   
 

(2-3) 

 All possible information about a quantum mechanical system can be derived from the 

wave function of the quantum mechanical system.[45, 46] The probability for locating a particle 

at a certain point is given by the equation [54]:  

           (2-4) 

This equation gives the probability of finding a particle at a given time t between the coordinates 

x to x+dx.[54] This was first proposed by Max Born and is known as Born’s postulate.[54] Most 

quantum mechanical applications do not have a need to account for time as a variable. When the 

potential energy of a quantum mechanical system is independent of time and only dependent on 
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position the time-dependent Schrödinger equation can be separated into two functions and solved 

using the separation of variables method [45]:  

                 (2-5) 

By substituting Equation 2-2 and differentiating with respect to time the following expression is 

obtained [26]: 

    

  
    

      

   
           

  

 

     

  
     

(2-6) 

The equation can then be divided by                 to give the following [26]: 

    

  

 

    

      

   
          

  

 

 

    

     

  
 

(2-7) 

The left hand side of the equation is independent of time and the right hand side of the equation 

is independent of position. The two sides of the equations are equal to the energy of the 

system.[45] By relating the left hand side to energy, E, the time-independent Schrödinger 

equation for a particle of mass m can be obtained [45]:  

    

  

      

   
                

(2-8) 

 The time-independent Schrödinger equation is much more widely used in quantum 

mechanics than the time-dependent Schrödinger equation.[45] Solutions to the time-independent 

Schrödinger equation are called stationary states, and this is because the probability densities for 

these states are independent of time.[55] For every physical observable there exists a quantum 

mechanical operator, and these operators may yield an eigenvalue for the Schrödinger 

equation.[45-47] A quantum mechanical operator is a symbol that corresponds to an action that 

is to be performed on whatever follows it.[45, 46] The Hamiltonian operator gives the total 

energy of a system, which is the sum of the kinetic and potential energies [45]: 
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(2-9) 

or 

 
   

   

  

  

   
      

(2-10) 

The Schrödinger equation is an eigenvalue problem with the wave equation being the 

eigenfunction and the total energy being the eigenvalue.[51] The Hamiltonian operator is the 

operator that corresponds to these particular eigenvalues and eigenfunctions [45]:  

        (2-11) 

 The equations covered above can account for and describe both the angular momentum 

and orbital angular momentum; however, an electron, also, posses an intrinsic angular 

momentum.[45] The intrinsic angular momentum is generally called the spin angular 

momentum, or spin.[45] The concept of spin is a purely quantum mechanical phenomenon.[45] 

This is due to the fact that there are no analogues that can describe spin in classical 

mechanics.[45] Spin is included in a wave function as an additional hypothesis [26], but the spin 

does not affect the energy of a one electron system.[45] The Schrödinger equation accounting for 

spin is of the following form [45]:  

                         or              (2-12) 

In this equation the   and   functions correspond to mS values of 1/2 or -1/2.[45] Though the 

spin does not affect the energy of a system it does double the number of possible energy states of 

a quantum mechanical system.[26] The energy states are given by    and   . The introduction 

of spin leads to a postulate of quantum mechanics. No experiments can distinguish one electron 

from another.[45] Therefore, the Schrödinger equation for a two electron atom can take either of 

the following forms [45, 46]: 
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                     (2-13) 

or 

                     (2-14) 

Mathematically speaking, antisymmetry requires that linear combinations involving all possible 

labeling of electrons must be taken.[45] For example, the linear combinations of a two-electron 

atom, such as helium, would be [45]:  

                                            (2-15) 

and  

                                            (2-16) 

Both equations seem to be reasonable for the helium atom, but experiment has shown that the 

second equation describes the ground state of helium.[45] This second equation is antisymmetric, 

which means that the sign of the equation will change if the terms are interchanged: 

                              (2-17) 

This is part of what lead to the postulate of quantum mechanics that states: all electronic wave 

functions must be antisymmetric under the interchange of any two electrons.[45] This postulate 

is also known as the Pauli Exclusion Principle.[45] The Pauli Exclusion Principle is generally 

applied to the wave functions of multi electron atoms.  

 The Schrödinger equation for multi-electron systems are much more complicated than 

those of single electron atoms. The added electron introduces a considerable amount of 

complication to the Schrödinger equation. The Hamiltonian operator of helium atom, for 

example, takes the following form [45]:  
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(2-18) 

Where    is the Laplacian operator with respect to the nucleus,   
 
 and   

 
 are the Laplacian 

operators for the two electrons, M is the mass of the nucleus,   is the mass of an electron,   is 

the position of the helium nucleus, and    and   are the positions of the electrons.[45] Through 

some approximations the Hamiltonian for the helium atom can be simplified. The simplified 

Hamiltonian for the helium atom takes the following form [45]:  

 
    

  

   
   

    
   

   

    
 
 

  
 
 

  
  

  

           
 

(2-19) 

However, even the simplified version of the Hamiltonian does not allow the Schrödinger 

equation of helium to be solved exactly. The 
  

           
 term is responsible for the complication 

in solving the Schrödinger equation of a helium atom.[45] This term accounts for the electron-

electron repulsion that takes place between the electrons, and if it were not for this term the 

Schrödinger equation of a helium atom would simply be the sum of the Hamiltonian operators of 

two hydrogen-like Schrödinger equations.[45] The electron-electron repulsion term makes the 

Hamiltonian for helium a three-body problem; moreover, the mathematics for solving three body 

problems are not yet known.[45] Because there are no mathematics to solve exactly for a three 

body problem approximation methods must be used to solve for multi body Schrödinger 

equations.  

 

Approximations 

 The Hamiltonian for the simplest molecule, H2
+
, may be written as follows [46]:  
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(2-20) 

In the Hamiltonian, the first two terms,  
 

   
  

  
 

   
  

 , are the kinetic energy terms for the 

two nuclei, the  
 

 
  

  term is the kinetic energy of the electron, the  
 

  
 

 

  
 terms are the 

coulomb attraction between the electron and the nuclei, and the  
 

   
 term is the nuclear 

repulsion between the nuclei.[46] To simplify the Hamiltonian from the original an 

approximation may be made to eliminate certain terms from the operator. The approximation 

used in the treatment of the Hamiltonian of the helium atom is the Born-Oppenheimer 

Approximation.[45, 46] Many works have been done describing the mathematics and 

applicability of the Born-Oppenheimer Approximation [56-58], and some have even been done 

to further study and describe the H2
+
 ion.[59] This term is synonymous with the infinitely heavy 

nucleus approximation when looking at individual atoms and reduces the Hamiltonian for 

molecules just as the infinitely heavy nucleus approximation did for the Hamiltonian of the 

helium atom.[45] In the Born-Oppenheimer Approximation the nuclei are seen as fixed in space 

and allow for the omission of any terms involving the movement or masses of the nuclei.[45] 

This approximation is made based on the fact that the nuclei are much larger than the electrons 

and are moving much more slowly than the electrons, and because of this huge velocity 

difference the electrons can compensate for nuclei movement instantaneously.[45, 46] The 

reduced Hamiltonian for the H2
+
 ion takes the following form upon application of the 

approximation:  

 
    

 

 
   

 

  
 
 

  
 
 

 
 

(2-21) 
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In the reduced Hamiltonian, the  
 

 
   term is the kinetic energy of the electron, the ra and rb 

terms are the distances of the electron from nucleus a and b, and R is the distance between the 

nuclei, which is treated as an adjustable parameter.[45] The Hamiltonian for the H2
+
 molecule is 

completely solvable; however, when a quantum mechanical system has more then one electron 

present, like the case of helium, the Hamiltonian will contain a term for the electron-electron 

repulsion that cannot be omitted by approximation.[45] The electron-electron repulsion again 

makes the Schrödinger equation a three-body problem, which cannot be solved with our current 

mathematics.[45] Approximation methods are used to solve Schrödinger equations with more 

electron-electron repulsion terms to give very accurate results.  

 One of the simplest approximation methods used is the variational method. The 

variational method is generally used in calculations and considerations of the ground state of 

systems.[45] In the ground state, the wave function can be represented in the following form 

[45]:  

           (2-22) 

The equation may then be multiplied by the complex conjugate of the ground state wave 

function, solved for the energy, and integrated over all space to give [45]: 

 
   

   
       

   
     

 
(2-23) 

The    in the equation represents the appropriate volume element for the wave equation.[45] In 

the variational theorem, the    is substituted for another function   and the corresponding 

energy is calculated by the following [45]:  

 
   

        

      
 

(2-24) 
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The variational principle states that    will be greater than the actual ground state energy and 

can be represented by the following [45]: 

       (2-25) 

The variational principle states that an upper bound for the ground state energy can be calculated 

by using any trial function (   that is well behaved and satisfies the boundary conditions 

associated with the problem of interest.[45, 46] It also states that the closer the trial function is to 

the actual ground state wave function the closer the trial function energy will be to the actual 

ground state energy.[45] The trial function will depend on some arbitrary parameters,        …, 

called variational parameters.[45] The energy must then also depend upon the parameters and 

can be represented as follows [45]:  

                (2-26) 

The    is then minimized with respect to the variational parameters allowing the determination 

for the best possible ground state energy that can be obtained from the trial function.[45]  

 Another simpler approximation, commonly used for less complex problems, is 

perturbation theory. The governing idea behind perturbation theory is that if one has an 

unsolvable wave function that is very close, but not quite the same as, a wave function that can 

be solved then the Hamiltonian operator can be written as [45, 46, 60]: 

                (2-27) 

The Schrödinger equation that can be solved exactly is [45]:  

                    (2-28) 

In the Hamiltonian, the second term is a perturbation that is small compared to the original 

Hamiltonian operator (  (0)
).[46] To apply perturbation theory to finding the solution of the of the 
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unsolvable Schrödinger equation the wave equation and the energy are written in the following 

fashion [45]:  

                    (2-29) 

and  

                    (2-30) 

The first terms in both equations are given by the solution to the unperturbed problem and the 

following terms are successive corrections.[45] The basic assumption in perturbation theory is 

that the successive corrections will become increasingly less significant until they converge and 

give the best possible solution to the quantum mechanical problem that can not be solved 

exactly.[45, 46] Perturbation theory and slight variations of perturbation theory are used in 

various kinds of quantum mechanical and computational studies.[61, 62] One can see that 

perturbation theory is a useful approximation method still used in research today.  

 The wave function of hydrogen is one of the simplest wave equations and can be solved 

exactly. However, the wave equations of more complex multi electron atoms and molecules 

cannot be solved exactly. The variable hindering the solvation of multi electron systems is 

electron-electron repulsion.[45] The electron-electron repulsion depends upon the position of the 

electrons in the system; therefore, the repulsion term must be a variable that changes with 

position to correspond with reality.[45, 46] With the addition of electron-electron repulsion that 

Schrödinger equation for multi electron systems becomes a three-body problem even upon 

application of the Born-Oppenheimer approximation.[45]  

Hartree-Fock Theory is an approximation theory that takes the repulsion term in the 

multi-electron Schrödinger equations by making the term a fixed term corresponding to the 

average repulsion.[45, 46] Hartree-Fock theory uses the concept of having electrons in 
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orbitals.[45] The helium is the simplest example to demonstrate Hartree-Fock theory and the 

Hartree method. The two-electron wave function can first be written as a product of orbitals [45, 

46]:  

                     (2-31) 

It is written as a product of the functions representing the orbitals the electrons are in and can be 

considered equal in this case as the two electrons in a helium atom are in the same 1s atomic 

orbital. The probability distribution of electron two is    r2)  (r2)dr2 and can be interpreted as a 

charge density.[45] Therefore, the potential energy experienced by electron 1 experiences due to 

electron 2 is [45, 46]: 

 
  

               
 

   
         

(2-32) 

The superscript “eff” emphasizes that the potential is an effective, or average, potential 

energy.[45] The equation for the potential energy, as well as the other equations in the Hartree-

Fock method, is in atomic units for easier notation and understanding.[45] The Hamiltonian for 

this method is defined as an effective one electron Hamiltonian of the following form [45, 46]: 

 
   

   
      

 

 
  

  
 

  
   

        
(2-33) 

The Schrödinger equation corresponding to the Hamiltonian above is [45]:  

    
   

                  
(2-34) 

The method of solving the Hartree-Fock equations of quantum mechanical systems like the one 

for the Helium atom is called the self-consistent field method.[45, 46] It is because of this that 

the Hartree-Fock method is more formally called Hartree-Fock Self Consistent Field (HF-SCF) 

method.[45] The procedure for solving the Hartree-Fock equation is as follows [45, 46]: 
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1. A form for the wave equation of the electron orbitals is guessed and used to evaluate the 

effective potential energy.  

2. The effective potential energy equation is then solved using the guessed form of the wave 

equation.  

3. The effective potential energy that was obtained is then used to evaluate the Schrödinger 

equation.  

4. The new form of the Schrödinger equation is then used to evaluate a new, presumably 

better, effective potential energy.  

5. The process is repeated until the convergence of the solutions is sufficient.  

If one was to apply the HF-SCF method to systems other than the helium atom, the potential 

energy equation and the Hamiltonian are simply adjusted to contain more nuclei or electrons. An 

example of another system HF-SCF method works well for is the H2
+
 molecule. The adjusted 

Hamiltonian for this molecule is of the following notation [45]: 

 
    

 

 
   

    
   

 

  
 
 

  
 

 

   
 

(2-35) 

The Schrödinger equation solved in the same self-consistent field method used for helium. The 

HF-SCF method is widely used in computational research.[63-66] HF-SCF is a very useful 

approximation method because it can give accurate results in calculation.[45] The accuracy of 

this method and the self-consistent nature are what undoubtedly makes it one of the most widely 

used computational methods in research today.  

 Perturbation theory is an approximation theory that can be used in simple quantum 

mechanical calculations that are carried out by hand as well as in more complex calculations 

requiring computational software. When perturbation theory is used in methods using 

computational software the Møller-Plesset (MP) perturbation theory is generally used.[46] 
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Møller and Plesset originally developed the theory to use the Hartree-Fock equation as the zero 

order perturbation theory term.[67, 68] However, Møller-Pleset differs from perturbation in that 

the first order perturbation and the charge density in the first order correction go to zero.[68] The 

second order corrections in Møller-Plesset calculations are greatly simplified by the special 

property of the first-order correction. In computational works the two most commonly used 

orders of theory are second (MP2) and fourth order (MP4).[46] The second order theory involves 

the excitation of two electrons relative to the ground state energy, while fourth order theory 

involves up to four electrons that are in excited states relative to the ground state energy.[46] 

MP2 calculations require a relatively modest amount of additional effort compared to Hartree-

Fock calculations and can provide slight improvements in the solutions to certain problems like 

stable organic molecules.[45] There are multiple applications and types of studies in which 

Møller-Plesset has been applied in research.[69-71]  

 Many post Hartree-Fock methods have been developed since the advent of the Hartree-

Fock Method to account for and advance upon the shortcomings of Hartree-Fock.[72] One 

inadequacy experienced in Hartree-Fock methods is that electron motion and repulsion are not 

represented in an instantaneous manner but rather an average.[72] One type of method that 

attempts to go beyond Hartee-Fock is Coupled-Cluster (CC) Theory. CC methods derive a 

wavefunction using the Hartree-Fock equation and adding a term for electron excitation.[46, 72] 

The equation used in CC methods may be represented in the following way [46]: 

          (2-36) 

where 

               (2-37) 
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The “T” term in the equation describes the excitations where T1 represents the single excitation, 

T2 represents double excitation, and so forth.[46] An advantage of the exponential term in CC 

methods describing the electron excitation is that excitations to all orders can be included, 

describing more of the correlation energy.[46] At each excitation beyond the first an increasing 

number of terms describes each excitation, inevitably complicating the term.[72] However, there 

is sufficient theoretical and numerical evidence that shows that contributions to the excitation 

term drastically decrease after the double excitation term.[72] This has led to the most commonly 

used CC method called Coupled-Cluster Singles-and-Doubles (CCSD) method which only 

includes the single and double excitations, as the name implies.[46, 72] There is also a CC 

method including the triple excited state that was termed the Coupled-Cluster Singles-Doubles-

and-Triples (CCSDT).[72] The CCSD(T) method is another type of coupled cluster method that 

includes triple excitation states, but the CCSD(T) method uses a CCSD calculation followed by a 

perturbational approximation for the triple excited state.[72] The CCSD(T) method also differs 

from the CCSDT method in that it calculates systems as closed shelled and scales to one less 

order of magnitude with respect to the number of atoms [72]. The CC method does, 

unfortunately, have the disadvantage of being much more time consuming than the calculations 

carried out in Hartree-Fock methods.[46] Nevertheless, the great amount of time needed to carry 

out CC methods has not hindered the use of them as CC methods have been applied to a plethora 

of different aspects of computational research.[73-75]  

 Another method that is widely used in computational chemistry is Density Functional 

Theory. Density Functional Theory methods of computation are generally always based on the 

fundamental mathematical theorems of Hohenberg and Kohn.[46, 76] The first Hohenberg-Kohn 

theorem states that the ground-state electronic energy of an atom or molecule is a functional of 
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the electron density.[46, 76] The term “functional” used in the theorem refers to a function of a 

function, and in the case of Density Functional Theory means that the ground state energy has a 

functional dependence on the electron density, which is a function of the electron 

coordinates.[46] The second theorem that Density Functional Theory relies on is rather apparent 

when thought of in classical terms. The second Hohenberg-Kohn theorem states that the electron 

density that minimizes the energy of the overall functional is the true electron density for the 

Schrödinger equation.[76] The function for the total electronic energy can be written in the 

following way [46]: 

                    (2-38) 

In the equation, T is the electronic kinetic energy, Vnucl is the attraction of the electrons to the 

nuclei, Vrep is the interelectronic coulomb repulsion, and Exc is the exchange correlation 

energy.[46] As stated previously the energy is reliant on the electron density; therefore, the terms 

in the energy function have the electron density in the expressions. The general expression for 

the kinetic energy term is quite complicated and not fully known, but the expression is 

traditionally written in the following form [46]:  

 
  

 

  
                

(2-39) 

The term for the electron density is   and it is the term that makes this expression and the others 

functionals of the electron density.[46] However, the kinetic energy term and others like it are 

rarely used in applications to molecules.[46] The more traditional expression containing the 

wave equation is [46]:  

 
   

 

 
    

 

       
(2-40) 
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The next term in the energy expression is the attraction of the electrons to the nuclei. The 

expression for this term can be written in the following form [46]:  

 
         

      

   
   

 

 
(2-41) 

The interelectronic coulomb repulsion term is written as an expression that is dependent upon the 

electron density just as the electron attraction [46]: 

 
     

 

 
 

        

   
       

(2-42) 

The last term in the energy expression is the exchange term, which represents the effects of 

electron exchange and correlation on the total energy.[46] There is not an exact known 

expression for this term, but many approximate expressions have been developed that lead to a 

number of methods.[46] The simplest expression for this exchange term is called the local 

density approximation (LDA) and is given by the following expression [46]: 

 
     

 

 
 
 

 
 
   

             
(2-43) 

where   is equal to unity for a free-electron gas and values of about 0.7 are commonly used for 

molecules.[46] The LDA for the exchange term is generally not of high enough accuracy.[46] 

Nevertheless, the quality of the results can be improved by adding correction terms to the 

exchange expression that depend on the gradient of the electron energy.[46] The expressions for 

the total energy can be expressed in terms of electron density in Density Functional Theory, thus, 

eliminating the need to determine the wavefunction.[46] It is, however, difficult to obtain high 

accuracy from the approach excluding the wavefunction; therefore, a more common practice is to 

determining the electron density from wavefunctions obtained from self-consistent field 

calculations.[46] This approach involves solving the following equation [46]: 
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       (2-44) 

where 

 
      

 

 
  

   
  
   

 

       

 

     
(2-45) 

and  

 
    

    
  

 
(2-46) 

The theory gives the Kohn-Sham orbitals,  i, and the electron density is obtained from the sum 

over occupied orbitals by the following [46]:  

        
 

 

 
(2-47) 

The advantage to Density Functional Theory is that the effort required to determine the electron 

equation is similar to or less than the effort required for Hartree-Fock calculations with the 

accuracy obtained in MP2 calculations.[46] Density Functional Theory has been used in a wide 

variety of research subjects and disciplines.[77-79] Density Functional Theory is still used in 

computational and theoretical works in chemistry today.[46]  

 Not all computational methods and approximation theories used are singularly focused on 

obtaining calculations through one specific method. Some computational methods can give the 

energy of a system, among other things, through the combination of other computational 

methods of varying accuracy and efficiency. One of the most recently developed methods using 

the combination of different computations is the correlation consistent composite approach 

(ccCA).[80, 81] The ccCA method is able to use successive calculation from varying methods to 

give the energy of a system on a final corrected function.[80, 81] The commanding principle of a 

“composite method” is to mimic the accuracy of more expensive and often computationally 
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tasking methods using additive approximations obtained from the different calculations.[80] The 

expectation for the successive approximations used is that the error in each approximation will 

cancel, at least partially, when combined in the corrected term.[80] The energy function for the 

ccCA method is [82]: 

                                      (2-48) 

All of the terms in the function for the energy are determined from approximations in the ccCA 

computation. The first term in the overall energy function is the energy calculated from the 

second order Møller-Plesset (MP2) complete basis set calculation.[80, 81] However, a complete 

basis set cannot actually be used, so this calculation is extrapolated from successive MP2 

calculations of increasingly larger basis sets.[80, 81] The next term in the function is the 

correlation correction, which is the difference between the CCSD(T) calculation and an MP2 

calculation that uses a moderately sized basis set [82]: 

                                    
 (2-49) 

The next term in the overall energy function is the core valence correction.[82] This correction is 

given by the difference between an MP2 calculation over all the electrons in the molecule and an 

MP2 using only the valence electrons.[80, 81] This correction is given by the following equation 

[82]: 

                                              (2-50) 

The basis sets used in calculations for the core valence correction are augmented basis sets and 

include diffuse functions.[82] The next term in the overall energy function is the scalar-

relativistic correction.[82] It is calculated using the Douglas-Kroll method and is given by the 

following equation [82]: 

                                   (2-51) 
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The final term in the overall energy function is the zero point energy correction.[82] This term is 

obtained from a vibrational frequency calculation using a DFT approximation.[81] The ccCA 

method has been used in a few different types of computational and theoretical research [83-85], 

but the method remains relatively new and unexplored.  

CHAPTER 3 

METHODOLOGY AND RESULTS  

Overview 

 In this research, two spin traps were evaluated computationally to determine the rate 

constants of the spin trap-hydroxyl radical addition reactions that each undergoes. The two spin 

traps chosen for this work were 5, 5-Dimethyl-1-pyrroline N-oxide (DMPO) and 2-

ethoxycarbonyl-2-methyl-3, 4-dihydro-2H-pyrrole-l-oxide (EMPO). These two spin traps were 

chosen because of the common occurrence of both spin traps in both computational and 

experimental research literature. Both spin traps undergo an addition reaction with the hydroxyl 

radical as discussed in the introduction. The structure of the two spin traps can be seen in better 

detail in the following figures.  

 

Figure 2. Skeletal structures of DMPO (left) and EMPO (right).  
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Figure 3. Ball and stick model of DMPO (left) and the DMPO-OH adduct (right).  
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Figure 4. Ball and stick model of EMPO (top left), the EMPO-OH adduct where the hydroxyl 

group adds on the same side as the ester (top right), and the EMPO-OH adduct where the 

hydroxyl group adds on the side opposite the ester (bottom).  
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Computational Details  

 The approximation method used to evaluate the free energies of the hydroxyl radical, the 

two spin traps, and the three spin trap-radical adducts was the ccCA method.[80-82] As stated 

earlier this method uses successive calculations using different approximation methods to give 

energies that are used in a corrected energy term to give the corrected energy for the 

approximation. NWChem computational software was used to carry out the calculations and the 

particular variation of the ccCA method native to this software was used [82]. The first step in 

this particular ccCA method is a geometry optimization carried out using Hartree-Fock Self-

Consistent Field using the cc-pVTZ basis set [80] and DFT/B3LYP (DFT using the B3LYP 

functional [86]). The geometry optimization is followed by successive energy calculations using 

second order Møller-Plesset (MP2) approximations using the following basis sets, respectively: 

cc-pVTZ, aug-cc-pVDZ, aug-cc-pVTZ, aug-cc-pVQZ, FC1/cc-pCVTZ,, ccpVTZ-DK. The MP2 

calculations were followed by a CCSD(T) calculation that used the cc-pVTZ basis set. Once the 

calculations are finished the correction terms for the energy are extrapolated from the various 

approximations. The input files used for the ccCA calculation are given in the following figures.  

Table I. NWChem input file for hydroxyl radical ccCA calculation.  

scratch_dir /home/shorthb/nwchem_scratch 

Title "OH_ccCA_Edit" 

 

Start  OH_ccCA_Edit 

 

echo 

 

charge 0 

 

geometry autosym units angstrom 

 O     0.00000     0.00000     -0.109917 

 H     0.00000     0.00000     0.864702 

end 
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Table I. (Continued) 
 

ecce_print /home/shorthb/nwchem_run/Summer/OH_ccCA_Edit/ecce.out 

 

ccca 

  dft 

  uhf 

  tce 

  nopen 1 

end 

 

task ccca 

 

Table II. NWChem input file for DMPO ccCA calculation. 

scratch_dir /scratch/shorthb 

Title "DMPO-ccCA_Edit-3-1" 

 

Start  DMPO-ccCA_Edit-3-1 

 

echo 

 

memory 200 mw 

 

charge 0 

 

geometry autosym units angstrom 

 C     0.337359     1.97947     -0.00186963 

 H     0.426525     2.79208     0.721196 

 C     1.28281     0.801965     0.329254 

 H     1.53573     0.823478     1.38899 

 H     2.21420     0.845030     -0.232651 

 C     0.485642     -0.475560     0.0127460 

 C     0.619267     -1.56823     1.06337 

 H     0.401201     -1.18227     2.05953 

 H     -0.0723824     -2.38106     0.851983 

 H     1.63774     -1.95829     1.06092 

 C     0.743325     -1.02032     -1.39286 

 H     6.90963e-05     -1.77657     -1.64047 

 H     0.692955     -0.228147     -2.14117 

 H     1.73391     -1.47330     -1.44049 

 N     -0.954276     0.0388375     0.0287678 

 H     0.553191     2.41594     -0.983381 

 C     -1.00721     1.33932     0.0209321 

 H     -1.96978     1.82352     -0.0193157 
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Table II. (Continued) 
 

 O     -1.90522     -0.788972     -0.00174647 

end 

 

ecce_print /home/shorthb/nwchem_run/Summer/DMPO-ccCA_Edit-3-

1/ecce.out 

 

basis "ao basis" spherical print 

H    S 

    33.870000000000     0.006068000000 

     5.095000000000     0.045308000000 

     1.159000000000     0.202822000000 

H    S 

     0.325800000000     1.000000000000 

H    S 

     0.102700000000     1.000000000000 

H    P 

     1.407000000000     1.000000000000 

H    P 

     0.388000000000     1.000000000000 

H    D 

     1.057000000000     1.000000000000 

O    S 

 15330.000000000000     0.000508000000    -0.000115000000 

  2299.000000000000     0.003929000000    -0.000895000000 

   522.400000000000     0.020243000000    -0.004636000000 

   147.300000000000     0.079181000000    -0.018724000000 

    47.550000000000     0.230687000000    -0.058463000000 

    16.760000000000     0.433118000000    -0.136463000000 

     6.207000000000     0.350260000000    -0.175740000000 

     0.688200000000    -0.008154000000     0.603418000000 

O    S 

     1.752000000000     1.000000000000 

O    S 

     0.238400000000     1.000000000000 

O    P 

    34.460000000000     0.015928000000 

     7.749000000000     0.099740000000 

     2.280000000000     0.310492000000 

O    P 

     0.715600000000     1.000000000000 

O    P 

     0.214000000000     1.000000000000 

O    D 

     2.314000000000     1.000000000000 
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Table II. (Continued) 
 

O    D 

     0.645000000000     1.000000000000 

O    F 

     1.428000000000     1.000000000000 

C    S 

  8236.000000000000     0.000531000000    -0.000113000000 

  1235.000000000000     0.004108000000    -0.000878000000 

   280.800000000000     0.021087000000    -0.004540000000 

    79.270000000000     0.081853000000    -0.018133000000 

    25.590000000000     0.234817000000    -0.055760000000 

     8.997000000000     0.434401000000    -0.126895000000 

     3.319000000000     0.346129000000    -0.170352000000 

     0.364300000000    -0.008983000000     0.598684000000 

C    S 

     0.905900000000     1.000000000000 

C    S 

     0.128500000000     1.000000000000 

C    P 

    18.710000000000     0.014031000000 

     4.133000000000     0.086866000000 

     1.200000000000     0.290216000000 

C    P 

     0.382700000000     1.000000000000 

C    P 

     0.120900000000     1.000000000000 

C    D 

     1.097000000000     1.000000000000 

C    D 

     0.318000000000     1.000000000000 

C    F 

     0.761000000000     1.000000000000 

N    S 

 11420.000000000000     0.000523000000    -0.000115000000 

  1712.000000000000     0.004045000000    -0.000895000000 

   389.300000000000     0.020775000000    -0.004624000000 

   110.000000000000     0.080727000000    -0.018528000000 

    35.570000000000     0.233074000000    -0.057339000000 

    12.540000000000     0.433501000000    -0.132076000000 

     4.644000000000     0.347472000000    -0.172510000000 

     0.511800000000    -0.008508000000     0.599944000000 

N    S 

     1.293000000000     1.000000000000 

N    S 

     0.178700000000     1.000000000000 
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Table II. (Continued) 
 

N    P 

    26.630000000000     0.014670000000 

     5.948000000000     0.091764000000 

     1.742000000000     0.298683000000 

N    P 

     0.555000000000     1.000000000000 

N    P 

     0.172500000000     1.000000000000 

N    D 

     1.654000000000     1.000000000000 

N    D 

     0.469000000000     1.000000000000 

N    F 

     1.093000000000     1.000000000000 

END 

 

scf 

  direct 

end 

 

 

dft 

  direct 

  mult 1 

  XC b3lyp 

  iterations 200 

  mulliken 

end 

 

mp2 

  scratchdisk 2048 

end 

 

ccsd 

  nodisk 

end 

 

driver 

  default 

  maxiter 100 

end 

 

task ccca 
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Table III. NWChem input file for EMPO ccCA calculation. 

scratch_dir /scratch/shorthb 

Title "EMPO_ccCA_Edit" 

 

Start  EMPO_ccCA_Edit 

 

echo 

 

charge 0 

 

geometry autosym units angstrom 

 C     1.22758     2.64109     0.178266 

 H     2.16428     2.42414     -0.341462 

 H     1.31254     3.64904     0.588612 

 C     0.932977     1.59272     1.27531 

 H     0.503731     2.07751     2.15079 

 H     1.83078     1.06527     1.58578 

 C     -0.113778     0.635879     0.675696 

 C     -1.26534     0.281922     1.60011 

 H     -1.69753     1.19331     2.01307 

 H     -2.03603     -0.256657     1.05709 

 H     -0.911236     -0.339184     2.42188 

 C     0.0668116     2.49921     -0.740292 

 N     -0.657518     1.44500     -0.506036 

 H     -0.192478     3.12805     -1.57687 

 C     0.574878     -0.579275     0.0270123 

 O     1.61651     -0.491964     -0.575576 

 O     -0.0986627     -1.71741     0.202416 

 C     0.455874     -2.89745     -0.432629 

 H     1.45885     -3.06244     -0.0393157 

 H     0.543802     -2.69980     -1.50033 

 C     -0.472103     -4.05327     -0.139757 

 H     -1.46920     -3.86195     -0.534952 

 H     -0.0858459     -4.95968     -0.607373 

 H     -0.553038     -4.23024     0.932620 

 O     -1.66867     1.01766     -1.12533 

end 

 

ecce_print 

/home/shorthb/nwchem_run/Summer/EMPO_ccCA_Edit/ecce.out 

 

basis "ao basis" spherical print 

H    S 

    33.870000000000     0.006068000000 

     5.095000000000     0.045308000000 
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Table III. (Continued) 
 

     1.159000000000     0.202822000000 

H    S 

     0.325800000000     1.000000000000 

H    S 

     0.102700000000     1.000000000000 

H    P 

     1.407000000000     1.000000000000 

H    P 

     0.388000000000     1.000000000000 

H    D 

     1.057000000000     1.000000000000 

O    S 

 15330.000000000000     0.000508000000    -0.000115000000 

  2299.000000000000     0.003929000000    -0.000895000000 

   522.400000000000     0.020243000000    -0.004636000000 

   147.300000000000     0.079181000000    -0.018724000000 

    47.550000000000     0.230687000000    -0.058463000000 

    16.760000000000     0.433118000000    -0.136463000000 

     6.207000000000     0.350260000000    -0.175740000000 

     0.688200000000    -0.008154000000     0.603418000000 

O    S 

     1.752000000000     1.000000000000 

O    S 

     0.238400000000     1.000000000000 

O    P 

    34.460000000000     0.015928000000 

     7.749000000000     0.099740000000 

     2.280000000000     0.310492000000 

O    P 

     0.715600000000     1.000000000000 

O    P 

     0.214000000000     1.000000000000 

O    D 

     2.314000000000     1.000000000000 

O    D 

     0.645000000000     1.000000000000 

O    F 

     1.428000000000     1.000000000000 

C    S 

  8236.000000000000     0.000531000000    -0.000113000000 

  1235.000000000000     0.004108000000    -0.000878000000 

   280.800000000000     0.021087000000    -0.004540000000 

    79.270000000000     0.081853000000    -0.018133000000 
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Table III. (Continued) 
 

    25.590000000000     0.234817000000    -0.055760000000 

     8.997000000000     0.434401000000    -0.126895000000 

     3.319000000000     0.346129000000    -0.170352000000 

     0.364300000000    -0.008983000000     0.598684000000 

C    S 

     0.905900000000     1.000000000000 

C    S 

     0.128500000000     1.000000000000 

C    P 

    18.710000000000     0.014031000000 

     4.133000000000     0.086866000000 

     1.200000000000     0.290216000000 

C    P 

     0.382700000000     1.000000000000 

C    P 

     0.120900000000     1.000000000000 

C    D 

     1.097000000000     1.000000000000 

C    D 

     0.318000000000     1.000000000000 

C    F 

     0.761000000000     1.000000000000 

N    S 

 11420.000000000000     0.000523000000    -0.000115000000 

  1712.000000000000     0.004045000000    -0.000895000000 

   389.300000000000     0.020775000000    -0.004624000000 

   110.000000000000     0.080727000000    -0.018528000000 

    35.570000000000     0.233074000000    -0.057339000000 

    12.540000000000     0.433501000000    -0.132076000000 

     4.644000000000     0.347472000000    -0.172510000000 

     0.511800000000    -0.008508000000     0.599944000000 

N    S 

     1.293000000000     1.000000000000 

N    S 

     0.178700000000     1.000000000000 

N    P 

    26.630000000000     0.014670000000 

     5.948000000000     0.091764000000 

     1.742000000000     0.298683000000 

N    P 

     0.555000000000     1.000000000000 

N    P 

     0.172500000000     1.000000000000 

N    D 
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Table III. (Continued) 
 

     1.654000000000     1.000000000000 

N    D 

     0.469000000000     1.000000000000 

N    F 

     1.093000000000     1.000000000000 

END 

 

dft 

  mult 1 

  XC b3lyp 

  iterations 200 

  mulliken 

end 

 

driver 

  default 

  maxiter 100 

end 

 

task ccca 

 

Table IV. NWChem input file for DMPO-OH ccCA calculation. 

scratch_dir /scratch/shorthb 

Title "DMPO-OH_CCCA_Edit-1" 

 

Start  DMPO-OH_CCCA_Edit-1 

 

echo 

 

memory 200 mw 

 

charge 0 

 

geometry autosym units angstrom 

 C     1.44201     1.07257     -0.631279 

 H     1.61836     0.915646     -1.69584 

 H     2.12555     1.84449     -0.284749 

 C     1.57825     -0.247004     0.153766 

 H     1.78454     -0.0291230     1.20114 

 H     2.38811     -0.868950     -0.224975 

 C     0.212333     -0.952171     0.0258281 

 C     -0.236783     -1.64271     1.31255 
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Table IV. (Continued) 
 

 H     -0.217039     -0.947699     2.15191 

 H     -1.25222     -2.02117     1.20451 

 H     0.426288     -2.47886     1.53817 

 C     0.152930     -1.92424     -1.15956 

 H     -0.878593     -2.22528     -1.34096 

 H     0.539044     -1.46460     -2.07033 

 H     0.743298     -2.81697     -0.949011 

 N     -0.688384     0.202252     -0.267218 

 O     -1.95575     0.135315     -0.204474 

 C     -0.00217926     1.48763     -0.412872 

 H     -0.455539     2.01846     -1.25279 

 O     -0.102091     2.26056     0.770331 

 H     -1.04056     2.38223     0.957389 

end 

 

ecce_print /home/shorthb/nwchem_run/Summer/DMPO-OH_CCCA_Edit-

2/ecce.out 

 

basis “ao basis” 46artesian print 

  H library “6-31G” 

  O library “6-31G” 

  C library “6-31G” 

  N library “6-31G” 

END 

 

scf 

  direct 

  ROHF 

  nopen 1 

  maxiter 200 

end 

 

dft 

  direct 

end 

 

mp2 

  scratchdisk 2048 

end 

 

ccsd 

  nodisk 

end 
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Table IV. (Continued) 
 

driver 

  default 

  maxiter 100 

end 

 

ccca 

  dft 

  uhf 

  tce 

  nopen 1 

end 

 

task ccca 

Table V. NWChem input file for EMPO-OH ccCA calculation. 

scratch_dir /scratch/shorthb 

Title "EMPO-OH_CCCA_Edit-1" 

 

Start  EMPO-OH_CCCA_Edit-1 

 

echo 

 

charge 0 

 

geometry autosym units angstrom 

 C     -0.155741     0.172467     -0.0727843 

 H     0.210643     -0.432633     -0.931561 

 H     -0.917985     0.898964     -0.418484 

 C     1.04096     0.863080     0.573428 

 H     0.655721     1.72637     1.16593 

 H     1.78081     1.23402     -0.163131 

 C     1.61334     -0.197255     1.51020 

 C     2.25849     0.469223     2.72358 

 H     1.50654     1.07531     3.27140 

 H     2.67999     -0.290007     3.41095 

 H     3.06890     1.14797     2.38269 

 C     2.59410     -1.08846     0.765296 

 O     2.15144     -2.08013     0.180555 

 O     3.94106     -0.717554     0.674503 

 C     4.65213     -1.60559     -0.165425 

 H     4.22360     -1.58864     -1.19107 

 H     4.61007     -2.63891     0.243228 

 C     6.11152     -1.19896     -0.259897 

 H     6.58683     -1.22663     0.739338 
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Table V. (Continued) 
 

 H     6.64935     -1.90473     -0.926280 

 H     6.20231     -0.179087     -0.679982 

 C     -0.694101     -0.741911     1.02216 

 N     0.440207     -0.950662     1.88223 

 O     0.510375     -1.91342     2.59525 

 O     -1.13334     -1.95909     0.473612 

 H     -2.07771     -2.07950     0.753975 

 H     -1.49782     -0.207723     1.57977 

end 

 

ecce_print /home/shorthb/nwchem_run/Summer/EMPO-OH_CCCA_Edit-

1/ecce.out 

 

basis "ao basis" cartesian print 

  H library "6-31G" 

  O library "6-31G" 

  C library "6-31G" 

  N library "6-31G" 

END 

 

scf 

  ROHF 

  nopen 1 

  maxiter 200 

end 

 

driver 

  default 

  maxiter 100 

end 

 

ccca 

  dft 

  uhf 

  tce 

  nopen 1 

end 

 

task ccca 
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As the title implies, the property of focus that this research set out to find is the rate 

constants of the various addition reactions of the spin traps and the hydroxyl radical. However, 

finding the rate constants is a trivial part of the process of this research as the rate constant is just 

extrapolated from the free energies. There is no approximation method or calculation included in 

the ccCA method that accounts for the rate constants. The free energies obtained from the ccCA 

calculations are used to obtain the rate constants upon finding the free energies of both the 

products and reactants. The following equation is the Arrhenius Equation and is the equation 

from which the rate constants are extrapolated:  

 
       

   
  

  
(3-1) 

 

Results and Discussion 

 The spin traps that were evaluated in this study were chosen because of the frequent 

occurrence of both in computational and experimental literature pertaining to spin traps and spin 

trapping. The results obtained thus far from the ccCA method are not very explanatory of the 

work that has been done towards the progress of this research. There were multiple problems that 

occurred along the course of this research that were both predicted and unforeseen. The original 

research equipment had 4-terabytes of hard drive space to run the calculations, but this 

equipment was insufficient as the calculation crashed the 4-terabyte drive array rendering it 

unusable. The research came down to a waiting game, as it was necessary to acquire funds and 

then to purchase new and better equipment with double the terabytes of the original equipment. 

After finally receiving the equipment, the ccCA method ran well, but took weeks to complete the 

entre calculation for just the hydroxyl radical. While the time being taken to complete the 

calculation was a problem that was predicted, the time still hindered the production of more 
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results. The new equipment was excellent and got the research farther than the original 

equipment, but the 8-terabyts of hard drive space was still insufficient once the calculation got to 

the CCSD(T) calculation. Once the calculation failed on the new equipment the calculations 

were moved to the university cluster and is currently still running using 9-terabytes of the 

university’s 13-terabytes. There are some intermediate results in the following tables, but no rate 

constants have been given yet as there have not been enough results obtained from the energy 

calculations.  

 

Table VI . Free Energies of reactants and products of the reactions.  

•OH DMPO EMPO DMPO-OH EMPO-OHa EMPO-OHb 

-75.706059 Pending  Pending  Pending  Pending Pending 
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CHAPTER 4 

 

CONCLUSIONS 

 

 The ccCA method is a relatively new and untested method that has been scarcely 

explored in computational literature. Due to the fact that this method has little research to 

reference there were some problems with the method that hindered the production of more 

results. There can be no realistic conclusions made from the little results obtained thus far. The 

calculations in the ccCA method took much more hard drive space than was ever imagined at the 

start of this project, and the time taken to complete all of the approximations in the ccCA method 

was much more than predicted at the beginning of the research. However, the calculations are 

still running and will hopefully provide accurate results in the not to distant future.  
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