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SUMMARY e
|\ T~

Measurements have been made at a Mach number near 4 of the dynamic

and static stability and drag of two blunt-nosed, low-fineness-ratio
bodies of revolution in free flight. One model had a parabolic forebody

and the other had a nearly flat front face.

The experimentally determined dynamic stability was found to be a
function of angle of attack. The flat-faced model was dynamically
to 16°. The

unstable throughout the angle-of-attack range covered, U
parabolic body was found to be dynamically stable throughout most of the

angle-of-attack range covered by the tests but was unstable at the lowest

angle, MO, and neutrally stable at the highest angle, 27°. Modified

Newtonian impact theory generally predicted the magnitude of the dynamic

stability parameter but not the variation with angle of attack. /?f}{ L ,.«)
A

INTRODUCTION

Investigations of the oscillatory behavior of ballistic vehicles
entering the earth's atmosphere at high speeds (refs. 1 and 2) have shown
that the restraint of the amplitude of their oscillations is primarily
due to the rapid increase of atmospheric density. In fact, during the
early phase of the descent to the altitude at which maximum dynamic
pressure 1s experienced, vehicles which would be dynamically unstable

in flight at constant altitude nevertheless will undergo oscillations
which are convergent. For such vehicles, the altitude at which diver-
gence will occur and the magnitude of the divergence have been shown to
be a function of the dynamic instability as well as the static flight

trajectory of the vehicle (ref. 3).
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Vehicles being considered for re-entry flight are of the high-drag,
low-fineness-ratio type; consequently, the dynamic stability of such shapes
is of interest. A program was therefore initiated in several facilities
of the Ames Research Center to measure the stability and drag character-
istics of two low-fineness-ratio, high-drag configurations through the
Mach number range from subsonic to moderate supersonic speeds. The two
configurations chosen were a paraboloid and a nearly flat-faced body,
which represent two different design approaches for ballistic vehicles.
The investigation at a nominal Mach number of 4 was conducted in the
Ames supersonic free-flight wind tunnel, and the results are presented
herein.

SYMBOLS
A frontal area, sq ft
Cp drag coefficient, %ij%, dimensionless
CLOL lift-curve slope, per radian
Cm pitching-moment coefficient, pitch32§dmoment, dimensionless
Cma pitching-moment-curve slope, per radian
S ineoinniteh derivati 9Cp 9y
Cp +C amping-in-pitch derivative, + — 9
q Mo 3 3

dimensionless [q(d/V)} [a(d/V)]
CNOL normal-force-curve slope, CLQ + Cp, dimensionless
d maximum body diameter, ft
Iy transverse moment of inertia, mo2, slug-ft2
Ki2 3 constants in equation (2), deg
1 length of model forebody, ft
m mass of model, slugs
M Mach number
e recll parameter, roll rate’ radians/ft

velocity
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angular pitching velocity, radians/sec

free-stream dynamic pressure, 1lb/sq ft

radius of base of model forebody, ft

velocity along flight path, ft/sec

distance along flight path or coordinate along body axis, ft
coordinate normal to body axis, ft

angle of attack (in the vertical plane),‘deg

peak amplitude of oscillation in combined pitch and yaw, deg
angle of sideslip (in the horizontal plane), deg

demping exponents in equation (2), £t

wave length of pitchiné oscillation, ft/cycle

free-stream air density, slugs/cu ft

transverse radius of gyration, ft

rates of rotation of vectors which generate the model pitching
motion, radians/ft

dynamic stability parameter, Cp - CIg + (Cmqfcmd)(d/d)z,
dimensionless

Superscript
first derivative with respect to time

DESCRIPTION OF TESTS

The two blunt bodies shown in figure 1 were tested in free flight

through still air at atmospheric pressure to determine their dynamic and
static stability and drag. The models were launched from a l.75-inch-
diameter, smooth-bore gun to give a velocity in the test section of about
L4600 feet per second, corresponding to a nominal Mach number of 4 and a
nominal Reynolds number of 3x10€ based on free-stream conditions and
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model diameter. Angle-of-attack and time-distance histories were recorded
in the test section at nine shadowgraph stations and with a chronograph.
The dynamic and static stability were obtained from the angle-of-attack
histories which were analyzed to define the growth or decay of the pitch-
ing motion and the wave length of oscillation. Total drag coefficients
were computed from deceleration data.

Models and Launching Technique

One model had a parabolic forebody, and the other model had a nearly
flat front face. The models were designed to have a given center-of-
gravity location and a given value of (d/0)® to enable a direct comparison
of results from the various facilities of the Ames Research Center
(refs. 4, 5, and 6). 1In order to scale the models properly, they were
made bimetallic. The forebodies of both model shapes were machined from
SAE 4130 steel. The afterbody of the parabolic model was machined from
A780A magnesium, and the afterbody of the flat-faced model was machined
from 7075-T6 aluminum. The notch in the afterbody and the spike on the
back of the model, shown in figure 1, were aids used in measuring the
angular orientation of the model from the shadowgraphs. All models were
polished to a maximum surface roughness of about 20 microinches.

The sabot used for launching the models is shown in figure 2 with
the paraboloid. The screw threads on the afterbodies of the models
(fig. 1) were used to hold the models in the sabots. As can be seen in
figure 2, the nylon sabots were made in two pieces with a canted front
face. The split sabot allowed for model and sabot separation; whereas,
the canted front face induced angle of attack to the model. For each
model launched, the sabot cant angle was chosen to give the desired peak
amplitude of oscillation. The peak amplitude was generally from 2 to 3
times the angle of cant of the sabot, although one launching produced a
peak angle of attack five times the canted angle. The sabots were canted
with angles of from 2° to 60, which induced peak amplitudes of oscillation
to the models of from L4° to 27°.

Figure 3 shows typical shadowgraphs taken in these tests, one for
each model. In both shadowgraphs the models are near zero angle of attack.

STABILITY DATA REDUCTION

The growth or decay of the motion of a vehicle in flight is a measure
of the dynamic stability. The frequency of oscillation is a measure of
the static stability. It was shown by Allen in reference 2 that a con-
venient parameter which describes the dynamic stability of a vehicle
entering the atmosphere is of the form,




£ = Cp - CLy + (Cmg*Cng) (4/0)® (1)

In reference 7 it was shown that this same parameter describes the dynamic
stability of a vehicle flying at constant altitude. In reference 7 the
equation of pitching motion was developed for unconstrained flight with
the assumptions of a nonspinning body of revolution at zero angle of trim
with linear aerodynamic moments. Inspection of the motions of the present
test models showed that these assumptions would not allow analytical
representation of the motions with sufficient accuracy to define the
damping. In particular, the motions, all of which are shown plotted in
figure L4, indicated that the models were flying with small trim angle and
small rolling velocity. Examination of the motions in the a« - B plane
shows distorted ellipses which precess due to model spin. In order to
prove that -the models were indeed spinning, four pegs were installed in
the afterbody of one model. The amount of spin measured was compatible
with the observed precession. (Although the models were launched from a
smooth-bore gun, the sabots evidently imparted a small amount of spin to
the models.) Analysis of the data also showed the presence of small
angles of trim. Although the models were axially symmetric, they were
bimetallic and slight misalinement in the construction could cause the
center of gravity to be shifted off the axis of rotation. This shift,

in turn, would cause the model to trim in flight.

An examination of the typical angle-distance histories in figures 4(i)
and 4(j) shows the motion to be convergent in one plane (a plane, fig. 4(j))
and divergent in the other (B plane, fig. 4(3)). Since the motions are
inertially coupled, the analysis by individual planes separately leads
to an erroneous result.

In order to determine the parameter ¢ from the data of the present
tests, therefore, the tricyclic theory of pitching and yawing motion was
used. This theory was developed by Nicolaides in reference 8 and includes
the effects of trim and spin on the model motions. The solution of the
differential equation of motion as given by Nicolaides is rewritten here
in the nomenclature of this report,

: B+ i = Kle(ﬂ1+iw1)x + Kze(ﬂz-iwz)x + KgelPX (2)
where
n1+ﬂ2—-2—55 . (3)
and

(&)
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Equation (2) was fitted to the measurements of o and P of each flight
by the method of differential corrections as described by Shinbrot in
reference 9. The curves shown in figure 4 were obtained by use of
equation (2). It can be seen that although the motions are widely varied,
equation (2) fitted to the data of each flight does represent the actual
free-flight motions of these models.

The dynamic stability parameter, £, was calculated from the constants
ny and 12 by use of the relationship shown in equation (3). The static
stability derivative was computed from the wave length of oscillation
(eq. (4)) by means of the relation,

821
Cmg, = Y (5)

_2*‘
A P Ad
which is developed in reference 7.

The scatter in the measurements of the angles of pitch and yaw from
the shadowgraphs can be considered as a measure of the accuracy of the
dynamic stability parameter, £. A probable error of 0.03° in the angle
measurements was determined statistically from many readings by several
observers. If the errors in the angle-of-attack readings were oriented
in the worst possible arrangement, this would result in error of £ of
#0.4 at the low angle of attack and *#0.1l at the high angle of attack.

RESULTS AND DISCUSSION

Dynamic Stability

The results of the dynamic stability tests are presented in figure 5,
where the dynamic stability parameter, &, is plotted as a function of
amplitude of oscillation, ap. The parameter € 1s positive when the
model motion is divergent (dynamic instability) and is negative when the
model motion is convergent (dynamic stability). Values of & = 0O repre-
sent neutral stability. These values of £ presented in the figure were
calculated with the assumption of a linear system over the amplitude
range covered by any one test. The data of reference U4, which cover an
angle-of-attack range up to 12° in the same Mach number range as the
present tests, show that the nonlinearities in the static aerodynamic
moments on these two body shapes are small. It can be seen in figure 5,
however, that there is a considerable dependence of damping on angle of
attack. In each of the present test flights, the model oscillated through
an angle-of-attack range from near O° to the peak amplitude at which &
is plotted. The value of ¢ measured for that amplitude range is there-
fore the dynamic stability parameter of an equivalent linear system whose
oscillation amplitude over the same range uld decay in the same way as
that experienced by the modeMggss =~~~ a8




It can be seen in figure 5 that the flat-faced model was dynamically
unstable throughout the angle-of-attack range covered by the tests. The
greatest instability occurred when the model oscillated up to 8° amplitude.
The parabolic model was dynamically stable throughout most of the angle
range covered by the tests. This model was unstable, however, at the
lowest amplitude tested, MO, and neutrally stable at the highest angle, 270

The filled symbol on the curve for the flat-faced model at ap = 5°
is the result of one confirming test made in the new 203-~-foot long pres-
surized ballistic range. This facility became available after the present
investigation was almost completed. The data from this flight were
incomplete because only 14 of the 24 measuring stations were available
at the time of testing. This left a gap of 98 feet in the record of the
model motion. The length of flight path, however, was eight times the
length of flight path in the wind tunnel so that considerably more cycles
of oscillation occurred. The result obtained is included in figure 5 and
shows excellent agreement of the data from the two facilities. '

Included in figure 5 are two values of £, one for each model,
obtained from the data of the Ames 8- by 7-foot wind tunnel at a Mach
number of 3.5 (ref. 5). These data points were obtained from forced
oscillations of limited amplitude (1.5°) about zero angle of attack.

The data obtained in this wind tunnel show that when the models were
oscillated 1.5° about angles other than zero, the dynamic stability of
the paraboloid changed very little, whereas there was a sharp decrease

of instability with small changes of angle of attack from zero for the
flat-faced model. The two points shown in figure 5 were the only wind-
tunnel data at conditions which approximated those of the present investi-
gation, that is, models oscillating through an angle range from near zero
to the angle at which & is plotted. The conclusion that there is a
discrepancy in the data from the two facilities for the flat-faced model
may not be warranted because the lowest amplitude obtained in the present
tests was about 4°. Tt is unknown what the value of ¢ would be as
measured in free flight at angles of the order of 1° or 2°.

Comparison between values of & obtained from the modified Newtonian
impact theoryl and experiment is also shown in figure 5. For the conditions
of these tests, the theory did not indicate any variation of & with angle
of attack.

The demping-in-pitch derivative, Cp_ + Cpy, expresses the dynamic sta-
bility of a model at constant velocity when the model is not free to plunge,
as, for example, in wind-tunnel tests. This derivative was formed by com-
bining the values of £ and Cp from the data of the present tests with
values of CN obtained from wind-tunnel measurements. These results are
shown in flgure 6. It is important to note that although the flat-faced

“Newtcnian impact theory was modified by replacing the coefficient 2
by the stagnation-pressure coefficient behind a normal shock wave.
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model is dynamically unstable (¢ > O), the damping-in-pitch derivative is
stabilizing (Cmg + Cmg < O) except near 8° amplitude. For the parabolic
model, the damping-in-pitch derivative is negative throughout most of the
angle range, whereas, as seen in figure D, this model is unstable near 40
and neutrally stable near 27° amplitude. It is apparent that so-called
"stable" values of the damping-in-pitch derivative (Cmq + Cmg < 0) do not
in themselves indicate convergent oscillations for a vehicle in free
flight. It can be seen from equation (1) that the combination of Cp

and CLOL can overshadow a stabilizing damping-in-pitch derivative to
produce a divergent motion.

Also shown in figure 6 are values of .the damping-in-pitch derivatives
obtained from mecdified Newtonian impact theory.

Static Stability

Moment-curve slopes, as a measure of the static stability, are pre-
sented in figure T where Cp, 1s plotted as a function of Mach number.

The data from the present tests are shown by the circle symbols and are
compared with data from references 4 and 6 and with unpublished data from
the Ames 6- by 6-foot and 8- by T-foot wind tunnels. The data from five
facilities are in good agreement. Included in the figure are values of
Cma computed from modified Newtonian impact theory. Comparison of the
calculated values with the data from the present tests near a Mach number
of 4 shows that the modified theory closely predicts the moment-curve
slope of both body shapes.

Drag

Coefficients of drag were determined from the deceleration of the
models by the procedure described in reference 10. These drag data are
represented by the circle symbols in figure 8 and are compared with data
from reference 6 and unpublished data from the Ames 6- by 6-foot and
8- by T-foot wind tunnels. The data from the various facilities are in
good agreement. Included in the figure are values of Cp computed from
modified Newtonian impact theory. Comparison of the calculated values
with the data from the present tests shows that the modified theory
underestimates the drag of the paraboloid by about 15 percent and over-
estimates the drag of the flat-faced model by about 10 percent.
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CONCLUDING REMARKS

Results of the measurements at a Mach number of 4 of the stability
and drag characteristics of two blunt-nosed, low-fineness-ratio bodies
of revolution, one relatively flat-faced and the other a paraboloid,
oscillating in free flight can be summarized as follows.

The dynamic stability of both body shapes was found to be a function
of angle of attack. The flat-faced model was dynamically unstable through-
out the amplitude range from L4° to 16°. The greatest instability occurred
near 8° amplitude. The parabolic model was dynamically stable throughout
most of the amplitude range of the tests. This body was unstable at the
lowest amplitude tested, ho, and neutraily stable at the highest amplitude,
27°. Modified Newtonian impact theory does not predict a variation of
dynamic stability with angle of attack, whereas, a variation is shown by
the data of the present tests. Values of the damping-in-pitch derivative,
Cmq + Cm&, were found to be stabilizing throughout most of the test range.

The divergence in oscillation of the flat-faced model was thus attributable
to the high drag coefficient and negative lift-curve slope.

The static stabili. of both the parabolic and the flat-faced models
as measured in five facilities at the Ames Research Center over a wide
Mach number range form a consistent set of data. Modified Newtonian impact
theory closely predicts the moment-curve slope of both body shapes near a
Mach number of k4.

The drag data from the present tests and the data from wind-tunnel
tests are in good agreement. Modified Newtonian impact theory underesti-
mates the measured drag of the paraboloid by about 15 percent and over-
estimates the measured drag of the flat-faced model by about 10 percent
near a Mach number of 4.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Mar. 11, 1959
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Figure 1.- Sketches of models; all dimensions in inches.

-~y



12

o9 S0
e o .
L N ] .o
e ° LJ

oe Geo

Figure 2.~

"0 00
[ X X ]
so0 eSS

Photograph of sabot with parabolic model.

A-24557




24845

A

b2,
hadowgraphs.

1]
= [
-~ [0}
1 >
[0} el
B &
£ £
o
3 (0]
() D)
Q )
] £
G oy
| Q
+ o
S

fry .
(20

N
-

p—
o]
o
fy




e8cCHS
L X X J

S
. e &
>

(XX XN ]
e & o
[ 3 L]

1k

*guotqow Sutmed pue FUTYOGTJ -*+ 2JINITH
.om.x opnqtTdure sead ‘Topow pPooeI-1BTI Amv

sea.bap ‘g
14 [+ 0 2- -

seoubap ‘o




o e 15

veoce
s0eee
®
[ ]
L
L]

a, degrees
o

-8 -4 0 4 8
B, degrees

(v) Flat-faced model, peak amplitude 8.0°.

Figure 4.- Continued.
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Figure T.- Static-stability data.
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