709 research outputs found
Selection of the scaling solution in a cluster coalescence model
The scaling properties of the cluster size distribution of a system of
diffusing clusters is studied in terms of a simple kinetic mean field model. It
is shown that a one parameter family of mathematically valid scaling solutions
exists. Despite this, the kinetics reaches a unique scaling solution
independent of initial conditions. This selected scaling solution is marginally
physical; i.e., it is the borderline solution between the unphysical and
physical branches of the family of solutions.Comment: 4 pages, 5 figure
Exact results for the reactivity of a single-file system
We derive analytical expressions for the reactivity of a Single-File System
with fast diffusion and adsorption and desorption at one end. If the conversion
reaction is fast, then the reactivity depends only very weakly on the system
size, and the conversion is about 100%. If the reaction is slow, then the
reactivity becomes proportional to the system size, the loading, and the
reaction rate constant. If the system size increases the reactivity goes to the
geometric mean of the reaction rate constant and the rate of adsorption and
desorption. For large systems the number of nonconverted particles decreases
exponentially with distance from the adsorption/desorption end.Comment: 4 pages, 2 figure
Fast diffusion of a Lennard-Jones cluster on a crystalline surface
We present a Molecular Dynamics study of large Lennard-Jones clusters
evolving on a crystalline surface. The static and the dynamic properties of the
cluster are described. We find that large clusters can diffuse rapidly, as
experimentally observed. The role of the mismatch between the lattice
parameters of the cluster and the substrate is emphasized to explain the
diffusion of the cluster. This diffusion can be described as a Brownian motion
induced by the vibrationnal coupling to the substrate, a mechanism that has not
been previously considered for cluster diffusion.Comment: latex, 5 pages with figure
A Nonzero Gap Two-Dimensional Carbon Allotrope from Porous Graphene
Graphene is considered one of the most promising materials for future
electronic. However, in its pristine form graphene is a gapless material, which
imposes limitations to its use in some electronic applications. In order to
solve this problem many approaches have been tried, such as, physical and
chemical functionalizations. These processes compromise some of the desirable
graphene properties. In this work, based on ab initio quantum molecular
dynamics, we showed that a two-dimensional carbon allotrope, named biphenylene
carbon (BPC) can be obtained from selective dehydrogenation of porous graphene.
BPC presents a nonzero bandgap and well-delocalized frontier orbitals.
Synthetic routes to BPC are also addressed.Comment: Published on J. Phys. Chem. C, 2012, 116 (23), pp 12810-1281
Steady-State Properties of Single-File Systems with Conversion
We have used Monte-Carlo methods and analytical techniques to investigate the
influence of the characteristic parameters, such as pipe length, diffusion,
adsorption, desorption and reaction rate constants on the steady-state
properties of Single-File Systems with a reaction. We looked at cases when all
the sites are reactive and when only some of them are reactive. Comparisons
between Mean-Field predictions and Monte-Carlo simulations for the occupancy
profiles and reactivity are made. Substantial differences between Mean-Field
and the simulations are found when rates of diffusion are high. Mean-Field
results only include Single-File behavior by changing the diffusion rate
constant, but it effectively allows passing of particles. Reactivity converges
to a limit value if more reactive sites are added: sites in the middle of the
system have little or no effect on the kinetics. Occupancy profiles show
approximately exponential behavior from the ends to the middle of the system.Comment: 15 pages, 20 figure
Island diffusion on metal fcc(100) surfaces
We present Monte Carlo simulations for the size and temperature dependence of
the diffusion coefficient of adatom islands on the Cu(100) surface. We show
that the scaling exponent for the size dependence is not a constant but a
decreasing function of the island size and approaches unity for very large
islands. This is due to a crossover from periphery dominated mass transport to
a regime where vacancies diffuse inside the island. The effective scaling
exponents are in good agreement with theory and experiments.Comment: 13 pages, 2 figures, to be published in Phys. Rev. Let
Equilibrium Properties of A Monomer-Monomer Catalytic Reaction on A One-Dimensional Chain
We study the equilibrium properties of a lattice-gas model of an catalytic reaction on a one-dimensional chain in contact with a reservoir
for the particles. The particles of species and are in thermal contact
with their vapor phases acting as reservoirs, i.e., they may adsorb onto empty
lattice sites and may desorb from the lattice. If adsorbed and
particles appear at neighboring lattice sites they instantaneously react and
both desorb. For this model of a catalytic reaction in the
adsorption-controlled limit, we derive analytically the expression of the
pressure and present exact results for the mean densities of particles and for
the compressibilities of the adsorbate as function of the chemical potentials
of the two species.Comment: 19 pages, 5 figures, submitted to Phys. Rev.
Weak Lensing from Space I: Instrumentation and Survey Strategy
A wide field space-based imaging telescope is necessary to fully exploit the
technique of observing dark matter via weak gravitational lensing. This first
paper in a three part series outlines the survey strategies and relevant
instrumental parameters for such a mission. As a concrete example of hardware
design, we consider the proposed Supernova/Acceleration Probe (SNAP). Using
SNAP engineering models, we quantify the major contributions to this
telescope's Point Spread Function (PSF). These PSF contributions are relevant
to any similar wide field space telescope. We further show that the PSF of SNAP
or a similar telescope will be smaller than current ground-based PSFs, and more
isotropic and stable over time than the PSF of the Hubble Space Telescope. We
outline survey strategies for two different regimes - a ``wide'' 300 square
degree survey and a ``deep'' 15 square degree survey that will accomplish
various weak lensing goals including statistical studies and dark matter
mapping.Comment: 25 pages, 8 figures, 1 table, replaced with Published Versio
Supernova / Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy
The Supernova / Acceleration Probe (SNAP) is a proposed space-based
experiment designed to study the dark energy and alternative explanations of
the acceleration of the Universe's expansion by performing a series of
complementary systematics-controlled measurements. We describe a
self-consistent reference mission design for building a Type Ia supernova
Hubble diagram and for performing a wide-area weak gravitational lensing study.
A 2-m wide-field telescope feeds a focal plane consisting of a 0.7
square-degree imager tiled with equal areas of optical CCDs and near infrared
sensors, and a high-efficiency low-resolution integral field spectrograph. The
SNAP mission will obtain high-signal-to-noise calibrated light-curves and
spectra for several thousand supernovae at redshifts between z=0.1 and 1.7. A
wide-field survey covering one thousand square degrees resolves ~100 galaxies
per square arcminute. If we assume we live in a cosmological-constant-dominated
Universe, the matter density, dark energy density, and flatness of space can
all be measured with SNAP supernova and weak-lensing measurements to a
systematics-limited accuracy of 1%. For a flat universe, the
density-to-pressure ratio of dark energy can be similarly measured to 5% for
the present value w0 and ~0.1 for the time variation w'. The large survey area,
depth, spatial resolution, time-sampling, and nine-band optical to NIR
photometry will support additional independent and/or complementary dark-energy
measurement approaches as well as a broad range of auxiliary science programs.
(Abridged)Comment: 40 pages, 18 figures, submitted to PASP, http://snap.lbl.go
Adsorption of Reactive Particles on a Random Catalytic Chain: An Exact Solution
We study equilibrium properties of a catalytically-activated annihilation reaction taking place on a one-dimensional chain of length () in which some segments (placed at random, with mean concentration
) possess special, catalytic properties. Annihilation reaction takes place,
as soon as any two particles land onto two vacant sites at the extremities
of the catalytic segment, or when any particle lands onto a vacant site on
a catalytic segment while the site at the other extremity of this segment is
already occupied by another particle. Non-catalytic segments are inert with
respect to reaction and here two adsorbed particles harmlessly coexist. For
both "annealed" and "quenched" disorder in placement of the catalytic segments,
we calculate exactly the disorder-average pressure per site. Explicit
asymptotic formulae for the particle mean density and the compressibility are
also presented.Comment: AMSTeX, 27 pages + 4 figure
- …