128 research outputs found

    Identifying Japanese studentsā€™ core spatial reasoning skills by solving 3D geometry problems: An exploration

    Get PDF
    This is the final version. Available on open access from SAGE Publications via the DOI in this recordTaking the importance of spatial reasoning skills, this article aims to identify ā€œcoreā€ spatial reasoning skills which are likely to contribute to successful problem-solving in three-dimensional (3D) geometry. ā€œCoreā€ spatial skills are those which might be particularly related to studentsā€™ successful problem-solving in 3D geometry. In this article, spatial reasoning skills are malleable and can be improved with teaching/interventions with mental rotation, spatial orientation, spatial visualization, and property-based reasoning. To achieve the study aim, we conducted a survey in total of 2,303 Japanese Grade 4ā€“9 students (10ā€“15 years old). We take the following stages of the procedures in this article: (a) Descriptive statistics; (b) 2 parameter logistic model (2PLM) analysis; and (c) Experiments with the Pearson correlation coefficient. As a result, we identified that a set of a few tasks can be used to check if students have ā€œcoreā€ spatial skills in 3D geometry. For both primary and secondary, rotating given representations mentally, and imagining and drawing 3D shapes, are important, and for secondary schools, property-based reasoning is also crucial for further problem-solving skills. Our findings and methodological approach have implications for mathematics education research and practice as our results provide clear, and promising principles for task/units/curriculum design for spatial reasoning in which more robust teaching intervention is necessary

    Iron bioavailability in two commercial cultivars of wheat: a comparison between wholegrain and white flour and the effects of nicotianamine and 2'-deoxymugineic acid on iron uptake into Caco-2 cells

    Get PDF
    Iron bioavailability in unleavened white and wholegrain bread made from two commercial wheat varieties was assessed by measuring ferritin production in Caco-2 cells. The breads were subjected to simulated gastrointestinal digestion and the digests applied to the Caco-2 cells. Although Riband grain contained a lower iron concentration than Rialto, iron bioavailability was higher. No iron was taken up by the cells from white bread made from Rialto flour or from wholegrain bread from either variety, but Riband white bread produced a small ferritin response. The results probably relate to differences in phytate content of the breads, although iron in soluble monoferric phytate was demonstrated to be bioavailable in the cell model. Nicotianamine, an iron chelator in plants involved in iron transport, was a more potent enhancer of iron uptake into Caco-2 cells than ascorbic acid or 2'-deoxymugineic acid, another metal chelator present in plants

    The effect of aneurysm geometry on the intra-aneurysmal flow condition

    Get PDF
    Various anatomical parameters affect on intra-aneurysmal hemodynamics. Nevertheless, how the shapes of real patient aneurysms affect on their intra-aneurysmal hemodynamics remains unanswered. Quantitative computational fluid dynamics simulation was conducted using eight patientsā€™ angiograms of internal carotid arteryā€“ophthalmic artery aneurysms. The mean size of the intracranial aneurysms was 11.5Ā mm (range 5.8 to 19.9Ā mm). Intra-aneurysmal blood flow velocity and wall shear stress (WSS) were collected from three measurement planes in each aneurysm dome. The correlation coefficients (r) were obtained between hemodynamic values (flow velocity and WSS) and the following anatomical parameters: averaged dimension of aneurysm dome, the largest aneurysm dome dimension, aspect ratio, and domeā€“neck ratio. Negative linear correlations were observed between the averaged dimension of aneurysm dome and intra-aneurysmal flow velocity (rā€‰=ā€‰āˆ’0.735) and also WSS (rā€‰=ā€‰āˆ’0.736). The largest dome diameter showed a negative correlation with intra-aneurysmal flow velocity (rā€‰=ā€‰āˆ’0.731) and WSS (rā€‰=ā€‰āˆ’0.496). The aspect ratio demonstrated a weak negative correlation with the intra-aneurysmal flow velocity (rā€‰=ā€‰āˆ’0.381) and WSS (rā€‰=ā€‰āˆ’0.501). A clear negative correlation was seen between the intra-aneurysmal flow velocity and the domeā€“neck ratio (rā€‰=ā€‰āˆ’0.708). A weak negative correlation is observed between the intra-aneurysmal WSS and the domeā€“neck ratio (rā€‰=ā€‰āˆ’0.392). The aneurysm dome size showed a negative linear correlation with intra-aneurysmal flow velocity and WSS. Wide-necked aneurysm geometry was associated with faster intra-aneurysmal flow velocity

    WNT signalling in prostate cancer

    Get PDF
    Genome sequencing and gene expression analyses of prostate tumours have highlighted the potential importance of genetic and epigenetic changes observed in WNT signalling pathway components in prostate tumours-particularly in the development of castration-resistant prostate cancer. WNT signalling is also important in the prostate tumour microenvironment, in which WNT proteins secreted by the tumour stroma promote resistance to therapy, and in prostate cancer stem or progenitor cells, in which WNT-Ī²-catenin signals promote self-renewal or expansion. Preclinical studies have demonstrated the potential of inhibitors that target WNT receptor complexes at the cell membrane or that block the interaction of Ī²-catenin with lymphoid enhancer-binding factor 1 and the androgen receptor, in preventing prostate cancer progression. Some WNT signalling inhibitors are in phase I trials, but they have yet to be tested in patients with prostate cancer

    Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants

    Get PDF
    Deoxymugineic acid (DMA) is a member of the mugineic acid family phytosiderophores (MAs), which are natural metal chelators produced by graminaceous plants. Rice secretes DMA in response to Fe deficiency to take up Fe in the form of Fe(III)ā€“MAs complex. In contrast with barley, the roots of which secrete MAs in response to Zn deficiency, the amount of DMA secreted by rice roots was slightly decreased under conditions of low Zn supply. There was a concomitant increase in endogenous DMA in rice shoots, suggesting that DMA plays a role in the translocation of Zn within Zn-deficient rice plants. The expression of OsNAS1 and OsNAS2 was not increased in Zn-deficient roots but that of OsNAS3 was increased in Zn-deficient roots and shoots. The expression of OsNAAT1 was also increased in Zn-deficient roots and dramatically increased in shoots; correspondingly, HPLC analysis was unable to detect nicotianamine in Zn-deficient shoots. The expression of OsDMAS1 was increased in Zn-deficient shoots. Analyses using the positron-emitting tracer imaging system (PETIS) showed that Zn-deficient rice roots absorbed less 62Zn-DMA than 62Zn2+. Importantly, supply of 62Zn-DMA rather than 62Zn2+ increased the translocation of 62Zn into the leaves of Zn-deficient plants. This was especially evident in the discrimination center (DC). These results suggest that DMA in Zn-deficient rice plants has an important role in the distribution of Zn within the plant rather than in the absorption of Zn from the soil

    Flow Residence Time and Regions of Intraluminal Thrombus Deposition in Intracranial Aneurysms

    Get PDF
    Thrombus formation in intracranial aneurysms, while sometimes stabilizing lesion growth, can present additional risk of thrombo-embolism. The role of hemodynamics in the progression of aneurysmal disease can be elucidated by patient-specific computational modeling. In our previous work, patient-specific computational fluid dynamics (CFD) models were constructed from MRI data for three patients who had fusiform basilar aneurysms that were thrombus-free and then proceeded to develop intraluminal thrombus. In this study, we investigated the effect of increased flow residence time (RT) by modeling passive scalar advection in the same aneurysmal geometries. Non-Newtonian pulsatile flow simulations were carried out in base-line geometries and a new postprocessing technique, referred to as ā€œvirtual inkā€ and based on the passive scalar distribution maps, was used to visualize the flow and estimate the flow RT. The virtual ink technique clearly depicted regions of flow separation. The flow RT at different locations adjacent to aneurysmal walls was calculated as the time the virtual ink scalar remained above a threshold value. The RT values obtained in different areas were then correlated with the location of intra-aneurysmal thrombus observed at a follow-up MR study. For each patient, the wall shear stress (WSS) distribution was also obtained from CFD simulations and correlated with thrombus location. The correlation analysis determined a significant relationship between regions where CFD predicted either an increased RT or low WSS and the regions where thrombus deposition was observed to occur in vivo. A model including both low WSS and increased RT predicted thrombus-prone regions significantly better than the models with RT or WSS alone

    Sexually dimorphic characteristics of the small intestine and colon of prepubescent C57BL/6 mice

    Get PDF
    Background There is increasing appreciation for sexually dimorphic effects, but the molecular mechanisms underlying these effects are only partially understood. In the present study, we explored transcriptomics and epigenetic differences in the small intestine and colon of prepubescent male and female mice. In addition, the microbiota composition of the colonic luminal content has been examined. Methods At postnatal day 14, male and female C57BL/6 mice were sacrificed and the small intestine, colon and content of luminal colon were isolated. Gene expression of both segments of the intestine was analysed by microarray analysis. DNA methylation of the promoter regions of selected sexually dimorphic genes was examined by pyrosequencing. Composition of the microbiota was explored by deep sequencing. Results Sexually dimorphic genes were observed in both segments of the intestine of 2-week-old mouse pups, with a stronger effect in the small intestine. Amongst the total of 349 genes displaying a sexually dimorphic effect in the small intestine and/or colon, several candidates exhibited a previously established function in the intestine (i.e. Nts, Nucb2, Alox5ap and RetnlĪ³). In addition, differential expression of genes linked to intestinal bowel disease (i.e. Ccr3, Ccl11 and Tnfr) and colorectal cancer development (i.e. Wt1 and Mmp25) was observed between males and females. Amongst the genes displaying significant sexually dimorphic expression, nine genes were histone-modifying enzymes, suggesting that epigenetic mechanisms might be a potential underlying regulatory mechanism. However, our results reveal no significant changes in DNA methylation of analysed CpGs within the selected differentially expressed genes. With respect to the bacterial community composition in the colon, a dominant effect of litter origin was found but no significant sex effect was detected. However, a sex effect on the dominance of specific taxa was observed. Conclusions This study reveals molecular dissimilarities between males and females in the small intestine and colon of prepubescent mice, which might underlie differences in physiological functioning and in disease predisposition in the two sexes
    • ā€¦
    corecore