18 research outputs found

    Characterization of a sperm factor for egg activation at fertilization of the newt Cynops pyrrhogaster

    Get PDF
    AbstractEggs of the newt, Cynops pyrrhogaster, arrested at the second meiotic metaphase are activated by sperm at fertilization and then complete meiosis to initiate development. We highly purified a sperm factor for egg activation from a sperm extract with several chromatographies. The purified fraction containing only a 45 kDa protein induced egg activation accompanied by an intracellular Ca2+ increase when injected into unfertilized eggs. Although injection of mouse phospholipase C (PLC) ζ-mRNA caused a Ca2+ increase and egg activation, partial amino acid sequences of the 45 kDa protein were homologous to those of Xenopus citrate synthase, but not to PLCs. An anti-porcine citrate synthase antibody recognized the 45 kDa protein both in the purified fraction and in the sperm extract. Treatment with the anti-citrate synthase antibody reduced the egg-activation activity in the sperm extract. Injection of porcine citrate synthase or mRNA of Xenopus citrate synthase induced a Ca2+ increase and caused egg activation. A large amount of the 45 kDa protein was localized in two lines elongated from the neck to the middle piece of sperm. These results indicate that the 45 kDa protein is a major component of the sperm factor for egg activation at newt fertilization

    Energy Transfer Between Hot Protons and Electromagnetic Ion Cyclotron Waves in Compressional Pc5 Ultra-low Frequency Waves

    Get PDF
    The Magnetospheric Multiscale (MMS) spacecraft observed many enhancements of electromagnetic ion cyclotron (EMIC) waves in an event in the late afternoon outer magnetosphere. These enhancements occurred mainly in the troughs of magnetic field intensity associated with a compressional ultralow frequency (ULF) wave. The ULF wave had a period of ∼2–5 min (Pc5 frequency range) and was almost static in the plasma rest frame. The magnetic and ion pressures were in antiphase. They are consistent with mirror-mode type structures. We apply the Wave-Particle Interaction Analyzer method, which can quantitatively investigate the energy transfer between hot anisotropic protons and EMIC waves, to burst-mode data obtained by the four MMS spacecraft. The energy transfer near the cyclotron resonance velocity was identified in the vicinity of the center of troughs of magnetic field intensity, which corresponds to the maxima of ion pressure in the compressional ULF wave. This result is consistent with the idea that the EMIC wave generation is modulated by ULF waves, and preferential locations for the cyclotron resonant energy transfer are the troughs of magnetic field intensity. In these troughs, relatively low resonance velocity due to the lower magnetic field intensity and the enhanced hot proton flux likely contribute to the enhanced energy transfer from hot protons to the EMIC waves by cyclotron resonance. Due to the compressional ULF wave, regions of the cyclotron resonant energy transfer can be narrow (only a few times of the gyroradii of hot resonant protons) in magnetic local time
    corecore