5,902 research outputs found
Probing the Binary Black Hole Merger Regime with Scalar Perturbations
We present results obtained by scattering a scalar field off the curved
background of a coalescing binary black hole system. A massless scalar field is
evolved on a set of fixed backgrounds, each provided by a spatial hypersurface
generated numerically during a binary black hole merger. We show that the
scalar field scattered from the merger region exhibits quasinormal ringing once
a common apparent horizon surrounds the two black holes. This occurs earlier
than the onset of the perturbative regime as measured by the start of the
quasinormal ringing in the gravitational waveforms. We also use the scalar
quasinormal frequencies to associate a mass and a spin with each hypersurface,
and observe the compatibility of this measure with the horizon mass and spin
computed from the dynamical horizon framework.Comment: 10 Pages and 6 figure
Astrophage of neutron stars from supersymmetric dark matter Q-balls
The gauge-mediated model of supersymmetry breaking implies that stable
non-topological solitons, Q-balls, could form in the early universe and
comprise the dark matter. It is shown that the inclusion of the effects from
gravity-mediation set an upper limit on the size of Q-balls. When in a dense
baryonic environment Q-balls grow until reaching this limiting size at which
point they fragment into two equal-sized Q-balls. This Q-splitting process will
rapidly destroy a neutron star that absorbs even one Q-ball. The new limits on
Q-ball dark matter require an ultralight gravitino m_3/2 < keV, naturally
avoiding the gravitino overclosure problem, and providing the MSSM with a dark
matter candidate where gravitino dark matter is not viable.Comment: 4 pages, 1 figure, Published in Phys. Rev. D. Rapid Communication
Spray Ejected from the Lunar Surface by Meteoroid Impact
Fragments ejected from lunar surface by meteoroid impact analyzed on basis of studies of hypervelocity impact in rock and san
Comment on `Formation of a Dodecagonal Quasicrystalline Phase in a Simple Monatomic Liquid'
In a recent paper M. Dzugutov, Phys. Rev. Lett. 70 2924 (1993), describes a
molecular dynamics cooling simulation where he obtained a large monatomic
dodecagonal quasicrystal from a melt. The structure was stabilized by a special
potential [Phys. Rev. A46 R2984 (1992)] designed to prevent the nucleation of
simple dense crystal structures. In this comment we will give evidence that the
ground state structure for Dzugutov's potential is an ordinary bcc crystal
Binary Black Holes: Spin Dynamics and Gravitational Recoil
We present a study of spinning black hole binaries focusing on the spin
dynamics of the individual black holes as well as on the gravitational recoil
acquired by the black hole produced by the merger. We consider two series of
initial spin orientations away from the binary orbital plane. In one of the
series, the spins are anti-aligned; for the second series, one of the spins
points away from the binary along the line separating the black holes. We find
a remarkable agreement between the spin dynamics predicted at 2nd
post-Newtonian order and those from numerical relativity. For each
configuration, we compute the kick of the final black hole. We use the kick
estimates from the series with anti-aligned spins to fit the parameters in the
\KKF{,} and verify that the recoil along the direction of the orbital angular
momentum is and on the orbital plane ,
with the angle between the spin directions and the orbital angular
momentum. We also find that the black hole spins can be well estimated by
evaluating the isolated horizon spin on spheres of constant coordinate radius.Comment: 15 pages, 10 figures, replaced with version accepted for publication
in PR
Gravitational recoil from spinning binary black hole mergers
The inspiral and merger of binary black holes will likely involve black holes
with both unequal masses and arbitrary spins. The gravitational radiation
emitted by these binaries will carry angular as well as linear momentum. A net
flux of emitted linear momentum implies that the black hole produced by the
merger will experience a recoil or kick. Previous studies have focused on the
recoil velocity from unequal mass, non-spinning binaries. We present results
from simulations of equal mass but spinning black hole binaries and show how a
significant gravitational recoil can also be obtained in these situations. We
consider the case of black holes with opposite spins of magnitude
aligned/anti-aligned with the orbital angular momentum, with the
dimensionless spin parameters of the individual holes. For the initial setups
under consideration, we find a recoil velocity of V = 475 \KMS a.
Supermassive black hole mergers producing kicks of this magnitude could result
in the ejection from the cores of dwarf galaxies of the final hole produced by
the collision.Comment: 8 pages, 8 figures, replaced with version accepted for publication in
Ap
Geologic applications of ERTS images on the Colorado Plateau, Arizona
Three areas in central and northern Arizona centered on the (1) Verde Valley, (2) Coconino Plateau, and (3) Shivwits Plateau were studied using ERTS photography. Useful applications results include: (1) upgrading of the existing state geologic map of the Verde Valley region; (2) detection of long NW trending lineaments in the basalt cap SE of Flagstaff which may be favorable locations for drilling for new water supplies; (3) tracing of the Bright Angel and Butte faults to twice their previously known length and correlating the extensions with modern seismic events, showing these faults to be present-day earthquake hazards; (4) discovering and successfully drilling perched sandstone aquifers in the Kaibab Limestone on the Coconino Plateau; and (5) determining the relationship between the Shivwits lavas and the formation of the lower Grand Canyon and showing that the lavas should be an excellent aquifer, as yet untapped
Exchange biasing of single-domain Ni nanoparticles spontaneously grown in an antiferromagnetic MnO matrix
Exchange biased composites of ferromagnetic single-domain Ni nanoparticles
embedded within large grains of MnO have been prepared by reduction of
NiMnO phases in flowing hydrogen. The Ni precipitates are 15-30
nm in extent, and the majority are completely encased within the MnO matrix.
The manner in which the Ni nanoparticles are spontaneously formed imparts a
high ferromagnetic- antiferromagnetic interface/volume ratio, which results in
substantial exchange bias effects. Exchange bias fields of up to 100 Oe are
observed, in cases where the starting Ni content in the precursor
NiMnO phase is small. For particles of approximately the same
size, the exchange bias leads to significant hardening of the magnetization,
with the coercive field scaling nearly linearly with the exchange bias field.Comment: 6 pages PDFLaTeX with 9 figure
Research core drilling in the Manson impact structure, Iowa
The Manson impact structure (MIS) has a diameter of 35 km and is the largest confirmed impact structure in the United States. The MIS has yielded a Ar-40/Ar-39 age of 65.7 Ma on microcline from its central peak, an age that is indistinguishable from the age of the Cretaceous-Tertiary boundary. In the summer of 1991 the Iowa Geological Survey Bureau and U.S. Geological Survey initiated a research core drilling project on the MIS. The first core was beneath 55 m of glacial drift. The core penetrated a 6-m layered sequence of shale and siltstone and 42 m of Cretaceous shale-dominated sedimentary clast breccia. Below this breccia, the core encountered two crystalline rock clast breccia units. The upper unit is 53 m thick, with a glassy matrix displaying various degrees of devitrification. The upper half of this unit is dominated by the glassy matrix, with shock-deformed mineral grains (especially quartz) the most common clast. The glassy-matrix unit grades downward into the basal unit in the core, a crystalline rock breccia with a sandy matrix, the matrix dominated by igneous and metamorphic rock fragments or disaggregated grains from those rocks. The unit is about 45 m thick, and grains display abundant shock deformation features. Preliminary interpretations suggest that the crystalline rock breccias are the transient crater floor, lifted up with the central peak. The sedimentary clast breccia probably represents a postimpact debris flow from the crater rim, and the uppermost layered unit probably represents a large block associated with the flow. The second core (M-2) was drilled near the center of the crater moat in an area where an early crater model suggested the presence of postimpact lake sediments. The core encountered 39 m of sedimentary clast breccia, similar to that in the M-1 core. Beneath the breccia, 120 m of poorly consolidated, mildly deformed, and sheared siltstone, shale, and sandstone was encountered. The basal unit in the core was another sequence of sedimentary clast breccia. The two sedimentary clast units, like the lithologically similar unit in the M-1 core, probably formed as debris flows from the crater rim. The middle, nonbrecciated interval is probably a large, intact block of Upper Cretaceous strata transported from the crater rim with the debris flow. Alternatively, the sequence may represent the elusive postimpact lake sequence
Distribution and prevalence of Wolbachia infections in native populations of the fire ant Solenopsis invicta (Hymenoptera : Formicidae)
Wolbachia are endosymbiotic bacteria that commonly infect arthropods. These bacteria induce a number of phenotypes in their hosts, including cytoplasmic incompatibility, thelytokous parthenogenesis, feminization, and male killing. We surveyed native South American populations of the fire ant Solenopsis invicta Buren for Wolbachia infections by using a diagnostic polymerase chain reaction assay. In addition, we determined the fidelity of vertical transmission of the bacteria from mother to offspring in this species by assaying daughters in 24 simple-family (monogyne) colonies. Infections were common in many parts of the extensive native range of S. invicta. However, the proportion of individuals infected varied greatly among samples, ranging from zero in several populations from the northerly parts of the range to >90% in more southerly populations. Possible explanations for this variation in the prevalence of Wolbachia infections are discussed. A survey of the two social forms of S. invicta from four geographic areas showed that the prevalence of Wolbachia infections consistently was higher in the monogyne form (single queen per colony) than the sympatric polygyne form (multiple queens per colony). One likely explanation for this trend is that the selective regimes acting on Wolbachia in the two forms differ because of the dissimilar reproductive strategies used by each form. Finally, overall transmission efficiency was found to be very high (>99%), making it unlikely that imperfect transmission prevents the spread of the microbe to near fixation in native populations
- …
