The inspiral and merger of binary black holes will likely involve black holes
with both unequal masses and arbitrary spins. The gravitational radiation
emitted by these binaries will carry angular as well as linear momentum. A net
flux of emitted linear momentum implies that the black hole produced by the
merger will experience a recoil or kick. Previous studies have focused on the
recoil velocity from unequal mass, non-spinning binaries. We present results
from simulations of equal mass but spinning black hole binaries and show how a
significant gravitational recoil can also be obtained in these situations. We
consider the case of black holes with opposite spins of magnitude a
aligned/anti-aligned with the orbital angular momentum, with a the
dimensionless spin parameters of the individual holes. For the initial setups
under consideration, we find a recoil velocity of V = 475 \KMS a.
Supermassive black hole mergers producing kicks of this magnitude could result
in the ejection from the cores of dwarf galaxies of the final hole produced by
the collision.Comment: 8 pages, 8 figures, replaced with version accepted for publication in
Ap