We present results obtained by scattering a scalar field off the curved
background of a coalescing binary black hole system. A massless scalar field is
evolved on a set of fixed backgrounds, each provided by a spatial hypersurface
generated numerically during a binary black hole merger. We show that the
scalar field scattered from the merger region exhibits quasinormal ringing once
a common apparent horizon surrounds the two black holes. This occurs earlier
than the onset of the perturbative regime as measured by the start of the
quasinormal ringing in the gravitational waveforms. We also use the scalar
quasinormal frequencies to associate a mass and a spin with each hypersurface,
and observe the compatibility of this measure with the horizon mass and spin
computed from the dynamical horizon framework.Comment: 10 Pages and 6 figure