research

Astrophage of neutron stars from supersymmetric dark matter Q-balls

Abstract

The gauge-mediated model of supersymmetry breaking implies that stable non-topological solitons, Q-balls, could form in the early universe and comprise the dark matter. It is shown that the inclusion of the effects from gravity-mediation set an upper limit on the size of Q-balls. When in a dense baryonic environment Q-balls grow until reaching this limiting size at which point they fragment into two equal-sized Q-balls. This Q-splitting process will rapidly destroy a neutron star that absorbs even one Q-ball. The new limits on Q-ball dark matter require an ultralight gravitino m_3/2 < keV, naturally avoiding the gravitino overclosure problem, and providing the MSSM with a dark matter candidate where gravitino dark matter is not viable.Comment: 4 pages, 1 figure, Published in Phys. Rev. D. Rapid Communication

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020