1,060 research outputs found

    New Production Mechanism of Neutral Higgs Bosons with Right scalar tau neutrino as the LSP

    Get PDF
    Motived by the neutrino oscillation data, we consider the lightest tau sneutrino ν~τ1\tilde \nu_{\tau_1} (which is mostly the right tau sneutrino) to be the lightest supersymmetric particle (LSP) in the framework of the minimal supersymmetric Standard Model. Both the standard and the non-standard trilinear scalar coupling terms are included for the right tau sneutrino interactions. The decay branching ratio of ν~τ2ν~τ1+h0\tilde \nu_{\tau_2} \to \tilde \nu_{\tau_1}+ h^0 can become so large that the production rate of the lightest neutral Higgs boson (h0h^0) can be largely enhanced at electron or hadron colliders, either from the direct production of ν~τ2\tilde \nu_{\tau_2} or from the decay of charginos, neutralinos, sleptons, and the cascade decay of squarks and gluinos, etc. Furthermore, because of the small LSP annihilation rate, ν~τ1\tilde \nu_{\tau_1} can be a good candidate for cold dark matter.Comment: 11 pages, RevTex, 3 eps figures. We clarify the theoretical framework of this study, with a note added in the end, and correct an equation, with updated figure

    Gauge Unification in Higher Dimensions

    Get PDF
    A complete 5-dimensional SU(5) unified theory is constructed which, on compactification on the orbifold with two different Z_2's (Z_2 and Z_2'), yields the minimal supersymmetric standard model. The orbifold accomplishes SU(5) gauge symmetry breaking, doublet-triplet splitting, and a vanishing of proton decay from operators of dimension 5. Until 4d supersymmetry is broken, all proton decay from dimension 4 and dimension 5 operators is forced to vanish by an exact U(1)_R symmetry. Quarks and leptons and their Yukawa interactions are located at the Z_2 orbifold fixed points, where SU(5) is unbroken. A new mechanism for introducing SU(5) breaking into the quark and lepton masses is introduced, which originates from the SU(5) violation in the zero-mode structure of bulk multiplets. Even though SU(5) is absent at the Z_2' orbifold fixed point, the brane threshold corrections to gauge coupling unification are argued to be negligibly small, while the logarithmic corrections are small and in a direction which improves the agreement with the experimental measurements of the gauge couplings. Furthermore, the X gauge boson mass is lowered, so that proton decay to e^+ \pi^0 is expected with a rate within about one order of magnitude of the current limit. Supersymmetry breaking occurs on the Z_2' orbifold fixed point, and is felt directly by the gauge and Higgs sectors, while squarks and sleptons acquire mass via gaugino mediation, solving the supersymmetric flavor problem.Comment: 21 pages, Latex, references added, final versio

    Nanoelectromechanical coupling in fullerene peapods probed via resonant electrical transport experiments

    Full text link
    Fullerene peapods, that is carbon nanotubes encapsulating fullerene molecules, can offer enhanced functionality with respect to empty nanotubes. However, the present incomplete understanding of how a nanotube is affected by entrapped fullerenes is an obstacle for peapods to reach their full potential in nanoscale electronic applications. Here, we investigate the effect of C60 fullerenes on electron transport via peapod quantum dots. Compared to empty nanotubes, we find an abnormal temperature dependence of Coulomb blockade oscillations, indicating the presence of a nanoelectromechanical coupling between electronic states of the nanotube and mechanical vibrations of the fullerenes. This provides a method to detect the C60 presence and to probe the interplay between electrical and mechanical excitations in peapods, which thus emerge as a new class of nanoelectromechanical systems.Comment: 7 pages, 3 figures. Published in Nature Communications. Free online access to the published version until Sept 30th, 2010, see http://www.nature.com/ncomms/journal/v1/n4/abs/ncomms1034.htm

    Towards precision medicine for hypertension: a review of genomic, epigenomic, and microbiomic effects on blood pressure in experimental rat models and humans

    Get PDF
    Compelling evidence for the inherited nature of essential hypertension has led to extensive research in rats and humans. Rats have served as the primary model for research on the genetics of hypertension resulting in identification of genomic regions that are causally associated with hypertension. In more recent times, genome-wide studies in humans have also begun to improve our understanding of the inheritance of polygenic forms of hypertension. Based on the chronological progression of research into the genetics of hypertension as the "structural backbone," this review catalogs and discusses the rat and human genetic elements mapped and implicated in blood pressure regulation. Furthermore, the knowledge gained from these genetic studies that provide evidence to suggest that much of the genetic influence on hypertension residing within noncoding elements of our DNA and operating through pervasive epistasis or gene-gene interactions is highlighted. Lastly, perspectives on current thinking that the more complex "triad" of the genome, epigenome, and the microbiome operating to influence the inheritance of hypertension, is documented. Overall, the collective knowledge gained from rats and humans is disappointing in the sense that major hypertension-causing genes as targets for clinical management of essential hypertension may not be a clinical reality. On the other hand, the realization that the polygenic nature of hypertension prevents any single locus from being a relevant clinical target for all humans directs future studies on the genetics of hypertension towards an individualized genomic approach

    Detailed Analysis of Proton Decay Rate in the Minimal Supersymmetric SO(10) Model

    Full text link
    We consider the minimal supersymmetric SO(10) model, where only one {\bf 10} and one 126ˉ\bar{\bf 126} Higgs multiplets have Yukawa couplings with matter multiplets. This model has the high predictive power for the Yukawa coupling matrices consistent with the experimental data of the charged fermion mass matrices, and all the Yukawa coupling matrices are completely determined once a few parameters in the model are fixed. This feature is essential for definite predictions to the proton decay rate through the dimension five operators. We analyze the proton decay rate for the dominant decay modes pK+νˉp \to K^{+} \bar{\nu} by including as many free parameters as possible and varying them. There are two free parameters in the Yukawa sector, while five in the Higgsino sector. It is found that an allowed region exists when the free parameters in the Higgs sector are tuned so as to cancel the proton decay amplitude. The resultant proton lifetime is proportional to 1/tan2β1/\tan^2 \beta and the allowed region eventually disappears as tanβ\tan \beta becomes large.Comment: 15 pages, 3 figures; the version to appear in JHE

    Cornering Solar Radiative-Zone Fluctuations with KamLAND and SNO Salt

    Get PDF
    We update the best constraints on fluctuations in the solar medium deep within the solar Radiative Zone to include the new SNO-salt solar neutrino measurements. We find that these new measurements are now sufficiently precise that neutrino oscillation parameters can be inferred independently of any assumptions about fluctuation properties. Constraints on fluctuations are also improved, with amplitudes of 5% now excluded at the 99% confidence level for correlation lengths in the range of several hundred km. Because they are sensitive to correlation lengths which are so short, these solar neutrino results are complementary to constraints coming from helioseismology.Comment: 4 pages, LaTeX file using RevTEX4, 6 figures include

    SU(5) monopoles and non-abelian black holes

    Get PDF
    We construct spherically and axially symmetric monopoles in SU(5) Yang-Mills-Higgs theory both in flat and curved space as well as spherical and axial non-abelian, ''hairy'' black holes. We find that in analogy to the SU(2) case, the flat space monopoles are either non-interacting (in the BPS limit) or repelling. In curved space, however, gravity is able to overcome the repulsion for suitable choices of the Higgs coupling constants and the gravitational coupling. In addition, we confirm that indeed all qualitative features of (gravitating) SU(2) monopoles are found as well in the SU(5) case. For the non-abelian black holes, we compare the behaviour of the solutions in the BPS limit with that for non-vanishing Higgs self-coupling constants.Comment: 14 Revtex pages, 9 PS-figure

    Strongly Coupled Grand Unification in Higher Dimensions

    Full text link
    We consider the scenario where all the couplings in the theory are strong at the cut-off scale, in the context of higher dimensional grand unified field theories where the unified gauge symmetry is broken by an orbifold compactification. In this scenario, the non-calculable correction to gauge unification from unknown ultraviolet physics is naturally suppressed by the large volume of the extra dimension, and the threshold correction is dominated by a calculable contribution from Kaluza-Klein towers that gives the values for \sin^2\theta_w and \alpha_s in good agreement with low-energy data. The threshold correction is reliably estimated despite the fact that the theory is strongly coupled at the cut-off scale. A realistic 5d supersymmetric SU(5) model is presented as an example, where rapid d=6 proton decay is avoided by putting the first generation matter in the 5d bulk.Comment: 17 pages, latex, to appear in Phys. Rev.
    corecore