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Sensory cues, postural stability and pain 

Abstract 1 

Objective: To investigate if attention to additional sensory information from the fingertip can 2 

improve postural stability during pain, which is known to impair balance. 3 

Methods: In sixteen healthy volunteers, experimental pain was induced by intramuscular 4 

injection of hypertonic saline in the right vastus medialis muscle (isotonic saline used as non-5 

painful control, intramuscular injection in the same location). Pain intensity was assessed on an 6 

11-point numeric rating scale (NRS, 0 representing “no pain” and 10 “maximum pain”). Subjects7 

were asked to stand as still as possible on a force plate for 40s with eyes closed. Their postural 8 

stability was quantified by the area and velocity of center of pressure (CoP) displacement. The 9 

CoP was recorded with and without pain, during 2 different conditions: (i) no touch, and (ii) 10 

while the subjects were asked to lightly touched a curtain with their right index finger and focus 11 

their attention on keeping it as still as possible.  12 

Results: Hypertonic injections induced higher NRS scores compared with control injections 13 

(P<0.05). During the hypertonic injection condition, the CoP area and velocity in both directions, 14 

increased during no touch compared with the light touch condition (P<0.05). No differences 15 

were found during light touch between hypertonic and isotonic injection conditions. Although 16 

experimental knee-related pain impaired postural stability, lightly touching a curtain with the 17 

fingertip decreased postural sway during painful conditions. 18 

Conclusion: Providing additional sensory information while pain patients are performing balance 19 

exercises may improve postural stability, and increase the quality of exercise, consequent 20 

rehabilitation protocols and clinical outcomes. 21 

Key words: knee pain, attention, balance, falls, light touch 22 
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Sensory cues, postural stability and pain 

1. Introduction1 

Pain impairs postural stability in young individuals (1-3). Previously it has been proposed that 2 

pain disrupts proprioceptive information from the affected area (4) which may impair postural 3 

stability (5). 4 

The control of bipedal posture demands cognitive process specially of sensory 5 

information presented (6). In order to generate accurate muscular responses while standing, the 6 

central nervous system utilizes cognitive resources to process relevant sensory information 7 

(vestibular, visual, and proprioceptive), to estimate the body position over time and generate 8 

appropriate muscle contractions for balance stability (7). The amount of cognitive resources for 9 

which balance control and all other stimuli and tasks competes is limited (8) which poses a 10 

special challenge for chronic pain patients which often present some degree of cognitive 11 

impairment (9). When competition for cognitive resources take place during balance tasks, 12 

young individuals prioritize body stability over performance of secondary tasks (10-12). 13 

However it is unknown if presence of pain will affect the integration processing of the sensory 14 

input used to control body stability. 15 

Additional sensory information applied to the side of the head, neck, side of the trunk and 16 

fingertips plays an important role on balance stability (13). When a relevant supplementary 17 

sensory information is presented, healthy subjects decreases body sway while standing quietly 18 

probably by directing the subjects’ attention to the effects of their movements (14). Similar 19 

reduction in body sway was also observed in individuals with balance problems such as 20 

Parkinson’s disease (15), peripheral neuropathy (16), vestibular loss (17) and lesion on the 21 

anterior cruciate ligament (18) [(for a review, please refer to (19)]. Furthermore, the increased 22 

body sway during quiet standing caused by deprivation of visual information and lower limb 23 
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muscular fatigue is mitigated if subjects are asked to keep the fingertip as still as possible while 1 

lightly touching an external object (20). In that situation, the touch per se does not provide 2 

mechanical support for balance enhancement, although the supplementary haptic information 3 

seems to be useful for balance control enhancement (21). Additionally, lightly touching a surface 4 

provoked changes in the primary somatosensory cortex, mainly characterized by a complex 5 

modulation of the somatosensory evoked potentials after electrical stimulation of the median 6 

nerve (22). However, it is still an open question if young subjects suffering with pain are also 7 

able to use light touch information to reduce body sway. Indeed, health young subjects without 8 

lightly touching a surface and under experimental painful conditions showed larger body sway 9 

and delayed muscle activation onset during pain compared with pain free conditions (23-28). 10 

The aim of the present study was to investigate how extra haptic information and pain 11 

affects quiet standing balance in young healthy individuals. It was hypothesized that conditions 12 

where supplementary haptic information is presented simultaneously with a painful stimulus will 13 

reduce body sway during quiet standing compared with control conditions. 14 

15 

2. Methods16 

2.1 Subjects 17 

Eighteen healthy male subjects participated in this study. The inclusion criteria was healthy men 18 

and women in the age between 18-50 years. Exclusion criteria were neurological, 19 

musculoskeletal or mental illnesses along with a history of previous or ongoing painful 20 

conditions and currently use of medications such as analgesics and anti-inflammatory drugs. The 21 

sample size was based on a previous study (25) to detect at least 20% difference in body sway 22 

parameters between pain and control conditions (type I error at 5% and power of 80%). A 23 
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convenience sample of subjects was recruited at the university campus. Each subject was given a 1 

detailed verbal explanation of the experiment and signed an informed consent statement. The 2 

study was conducted in accordance with the Helsinki Declaration and was approved by the local 3 

Ethics Committee (N- 20120077). 4 

5 

2.2 Experimental pain 6 

In a comfortable seated position subjects were given an intramuscular injection of hypertonic 7 

saline (1 mL, 5.8 %) into the right vastus medialis muscle, 5 cm proximal and 5 cm medial to the 8 

medial corner of the patella, while isotonic saline (1 mL, 0.9 %) was used a control injection  9 

(25). This model was chosen based on previous findings of larger effects on postural stability 10 

(larger body sway) when injections into the vastus medialis muscle and biceps femoris muscle 11 

were compared (25). Ultrasound imaging (Logiq S7 Expert with a ML6-15L transducer, GE 12 

Health Care) was used to determine the depth and location of the injection site. Immediately after 13 

the injections, subjects were asked if they were ready for the task and following a positive 14 

answer, they assumed the testing position. The time interval between injections was 15 

approximately 30 minutes.  16 

A numeric rating scale (NRS) with 11 points was used to assess pain intensity ranging 17 

from “no pain” (0) to “max pain imaginable” (10). NRS scores were collected before and after 18 

every trial when the CoP was measured and the average NRS score was used for further analysis. 19 

Subjects had to be pain free (defined as NRS = 0) for at least 10 minutes prior the next trial 20 

started. 21 

22 

2.3 Experimental design 23 
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All conditions and injections order were randomized (nine subjects received first the isotonic 1 

injection). Participants were blinded to the type of injection received. The experiment included 2 

nine trials completed in a single session. The test trials consisted of one familiarization trial and 3 

four experimental trials (performed for both types of injection): (i) prior to injection (baseline) 4 

for each no touch and light touch conditions, (ii) immediately after the injection (painful or 5 

control saline) for each no touch and light touch conditions. In total, the experiment lasted 6 

approximately one hour. 7 

8 

2.4 No touch and Light touch conditions 9 

In all trials, subjects were asked to stand as still as possible on a force platform (Plux Biosignals 10 

S.A, Arruda dos Vinhos, Portugal) with eyes closed for 40 s while blindfolded during two11 

conditions assigned randomly across all trials (i) no touch, and (ii) light touch on a curtain with 12 

their right index finger and keeping it as still as possible (29). Subjects performed the task 13 

blindfolded since a previous study have shown the contribution of visual information for 14 

controlling posture positively correlated to level of pain in patients with chronic knee pain (30). 15 

Between the two experimental conditions, subjects were asked to remove the blindfold 16 

and sit down for approx. 30 seconds. Foot position was marked with tape for consistency during 17 

recordings. The midline on the force platform was used to assure that feet were placed together, 18 

one in each half of the force platform. The elbow on the dominant side was flexed at 90 degrees 19 

and the forearm held parallel to the horizontal plane during all trials and conditions. The palm of 20 

the hand was positioned in a vertical position in relation to the floor with a straight wrist while 21 

the other arm was positioned naturally along the body (during both light touch and no touch 22 

conditions). 23 
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During the light touch condition, a curtain (0.282 kg, 200 * 220 cm) was hanging (only 1 

supported at the top and not touching the floor) in front of the subject, in a distance where the 2 

index finger of the dominant hand lightly touched the sheet and from this point it was moved an 3 

extra 8 cm towards the subject. The subjects were asked to keep the curtain as still as possible 4 

during the light touch condition. One assessor was placed on each side of the subject to provide 5 

reassurance and to prevent any risk of participants losing their balance. During the no touching 6 

condition, the subject was instructed to stand on the platform without touching the curtain. 7 

8 

2.5 Postural stability measurements 9 

Ground reaction forces were recorded and extracted for the 40 seconds during each condition on 10 

the force platform and sampled at 1 kHz (Opensignals v. 1.2.8). The reaction force signals were 11 

filtered (Butterworth, 2
nd
 order with zero lag and low pass frequency of 15Hz). After filtering, 512 

seconds were removed both from the start and from the end of the measurement for each 13 

condition to eliminate artifacts due to filtering process. Furthermore, the center of pressure (CoP) 14 

position was estimated from the filtered data and the CoP sway area and velocity (both medial-15 

lateral and anterior-posterior direction) were extracted via principal component analysis and 95% 16 

confidence interval for ellipse calculation (31). 17 

18 

2.6 Statistical analysis 19 

Normality of the distribution was tested by Q-Q plots for all variables and non-parametric tests 20 

were used in case normality was not present. The NRS scores following saline injections were 21 

analyzed with the non-parametric Friedman analysis of variance (ANOVA) and Wilcoxon 22 

matched pair test corrected with Bonferroni was used as post-hoc. The CoP area and velocity of 23 
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both medial-lateral and anterior-posterior direction were analysed via a parametric 3-way 1 

repeated measurement ANOVA with time (baseline and injection), saline (hypertonic and 2 

isotonic) and condition (no touch and light touch) as main factors. 3 

It was assessed: (i) if supplementary haptic (light touch) information improved CoP compared 4 

with no touch conditions; (ii) if hypertonic (painful) and isotonic (non-painful) injection affected 5 

CoP area compared with baseline (prior injection) conditions; and (iii) if supplementary haptic 6 

information improved CoP parameters during pain compared with no touch conditions.  7 

In case of significant factors or interactions in the main ANOVA, a post-hoc test with multiple 8 

comparisons correction (Bonferroni) was applied. Significance was set at P-values less than 0.05. 9 

All results are presented as mean ± standard error of the mean (SEM). 10 

11 

3. Results12 

3.1 Subjects and experimental pain intensity 13 

Eighteen healthy male subjects were included in the analysis (mean ± SEM: age 23.8±0.7 years, 14 

height 182.4±2.2 cm and weight 76.2 ± 2.5 kg). The NRS scores elicited by the hypertonic saline 15 

injection during both conditions were significantly higher than both isotonic saline conditions 16 

(isotonic injection and no touch condition: 0.81 ± 0.27, isotonic injection and light touch 17 

condition: 0.42± 0.16, hypertonic injection and no touch condition: 3.92± 0.37, hypertonic 18 

injection and light touch condition: 4.00 ± 0.43; Friedman: Chi Sqr(3) = 38.1, P < 0.001, 19 

Wilcoxon: P < 0.05). 20 

21 

3.2 Effect of light touch on postural stability 22 
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In Table 1, the complete results of the ANOVA are presented for all CoP variables. The ANOVA 1 

of the CoP area and velocity in both directions demonstrated a significant effect on the main 2 

factor condition (no touch vs light touch) with decreased values during the light touch compared 3 

with no touch conditions (ANOVA: F(1,17) > 13.5, P < 0.002, Bonferroni all P < 0.05, Fig 1). 4 

Additionally, the interaction between time, saline and condition indicated that, during baseline 5 

the CoP area (ANOVA: F(1, 17) = 9.7, P = 0.006, Fig 2) and velocity in the anterior-posterior 6 

direction (ANOVA: F(1, 17) = 4.6, P = 0.04, Fig 2) during light touch condition was smaller 7 

prior to isotonic saline injection compared with no touch condition (area: Bonferroni: P = 0.001; 8 

velocity anterior-posterior: Bonferroni: P < 0.001). For the velocity in the medial-lateral 9 

direction, the interaction between time, saline and condition (ANOVA: F(1, 17) = 5.3, P = 0.03, 10 

Fig 2) indicated significant reduction prior both isotonic and hypertonic saline injection during 11 

light touch condition compared with no touch condition (prior isotonic: Bonferroni: P < 0.001; 12 

prior hypertonic: Bonferroni: P = 0.03). 13 

14 

3.3 Effect of pain on postural stability 15 

The factor saline indicated that CoP velocity in the anterior-posterior direction was higher during 16 

hypertonic saline conditions (1.20 ± 0.43 cm/s) compared with isotonic saline condition (1.10 ± 17 

0.31 cm/s, ANOVA: F(1,17) = 5.8, P = 0.03). The ANOVA for the CoP area showed significant 18 

interaction between time, saline and condition (ANOVA: F(1, 17) = 9.7, P = 0.006, Fig 2). 19 

Comparing the no touch conditions within the factor time (baseline vs injection), the CoP area 20 

increased during hypertonic saline (painful) condition compared with its respective baseline 21 

(prior hypertonic saline and no touch) condition (Bonferroni: P = 0.03, Fig 2). For the no touch 22 

condition, the CoP velocity in both directions were significantly higher during hypertonic saline 23 
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condition compared with isotonic condition (interaction between time, saline and condition; 1 

medial-lateral direction: ANOVA: F(1,17) = 5.4, P = 0.03, Bonferroni: P = 0.009; anterior-2 

posterior direction: ANOVA: F(1, 17) = 4.6, P = 0.04, Bonferroni: P = 0.008)..  3 

4 

3.4 Effect of light touch condition during painful conditions 5 

The ANOVA for CoP area demonstrated significant interaction between time, saline and 6 

condition (ANOVA: F(1, 17) = 9.7, P = 0.006). During hypertonic injections (painful), the CoP 7 

area decreased during the light touch condition compared with the no touch condition 8 

(Bonferroni: P = 0.004, Fig 2). The ANOVA for CoP velocity in the medial-lateral direction 9 

demonstrated significant interaction between time, saline and condition (ANOVA: F(1, 17) = 10 

5.4, P = 0.03). During hypertonic injections, the CoP velocity in the medial-lateral direction 11 

decreased during the light touch condition compared with the no touch condition (Bonferroni: P 12 

= 0.01, Fig 2). For the velocity in the anterior-posterior direction, a significant interaction 13 

between time, saline and condition (ANOVA: F(1, 17) = 4.6, P = 0.04) indicated that during 14 

hypertonic injections, the CoP velocity in the anterior-posterior direction decreased during the 15 

light touch condition compared with the no touch condition (Bonferroni: P = 0.04, Fig 2). 16 

17 

18 

4. Discussion19 

The present study is the first to investigate whether postural impairments, due to experimental 20 

muscle pain, can be minimized by providing additional haptic sensory information from the 21 

fingertip. Although pain impaired balance performance, lightly touching a curtain allowed the 22 

subjects to improve their postural sway during pain. 23 
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1 

4.1 Baseline differences and effect of light touch during pain-free conditions 2 

Comparing baseline values during the no touch condition, subjects showed significantly smaller 3 

CoP area prior to hypertonic saline compared with the condition prior to isotonic saline. This 4 

difference in baseline measurements might be related to the natural variability of postural control 5 

in humans (32), since CoP measurements using force plates during postural tasks are considered 6 

to be reliable (33). Aiming to minimize the effect of such variability, a baseline condition was 7 

always performed prior to each injection condition for statistical comparisons. As demonstrated 8 

previously (21, 34-41), the light touch condition improved balance performance (smaller CoP 9 

area and lower velocity in both directions) in pain-free conditions. This indicates that healthy 10 

subjects, while having eyes closed, are able to efficiently use the additional haptic information  11 

to improve balance stability (42). 12 

13 

4.2 Effects of experimental pain on postural stability 14 

The hypertonic saline injection induced significantly higher pain intensity, during both no touch 15 

and light touch conditions, when compared with the isotonic saline injection. In line with 16 

previous studies (24, 26, 27), our results showed that experimental pain close to the knee joint 17 

impaired balance, as evidenced by increased: (i) CoP area during pain compared with baseline 18 

conditions and (ii) CoP velocity in both medial-lateral and anterior-posterior direction during the 19 

pain without touch compared with the isotonic injection condition without touch. A possible 20 

explanation is that experimental pain impairs sensory-motor interaction mechanisms, altering the 21 

motor output of relevant postural muscles (43), and therefore impairs balance control during 22 

quiet standing. For example, Matre et al. (4) showed that experimental pain, applied to the 23 

Page 11 of 46

Official Journal of the American Academy of Pain Medicine

Pain Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Sensory cues, postural stability and pain 

tibialis anterior and soleus muscles, impaired proprioception at the ankle joint (measured by 1 

repositioning tasks) in healthy individuals. Furthermore, simultaneous painful stimulation of both 2 

the tibialis anterior and medial gastrocnemius muscles, lead to failure of the motor system in 3 

maintaining the muscular strategy similar to conditions without pain, therefore impairing balance 4 

stability (23). 5 

6 

4.3 Effects of light touch on balance impairments due to experimental pain 7 

When the subjects were asked to lightly touch the curtain and focus their attention on keeping it 8 

as still as possible, the balance impairments due to pain were significantly reduced by 9 

improvements in the CoP area and velocity in both directions. If experimental lower limb pain 10 

impairs sensory-motor mechanisms (24, 27), balance improvements observed during light touch 11 

trials suggest that young healthy adults are able to efficiently use extra haptic information to 12 

improve their bipedal stability (42) and to mitigate the sensory-motor impairments due to pain 13 

(44). This seems to show a remarkable capacity of the postural control system to dynamically 14 

reweight the contribution of all available sensory information in order to preserve and/or 15 

optimize balance control (45) even in presence of experimental pain, which is known to impair 16 

balance stability and proprioceptive information from nearby joints (4). However, reorganizing 17 

the different sensory inputs to optimize balance is a costly cognitive process for the central 18 

nervous system (6), even for healthy individuals (42, 46-48). Such cognitive cost has additionally 19 

been reported to increase when postural control is compromised by individual factors, e.g. 20 

injuries (49), fatigue (50) and aging (51). This costly process suggests that a significant amount 21 

of cognitive resources must be allocated to maintain postural stability when sensory inputs are 22 

reorganized and balance stability is jeopardized. Even though the present study did not measure 23 

Page 12 of 46

Official Journal of the American Academy of Pain Medicine

Pain Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Sensory cues, postural stability and pain 

any cortical activation during the task, there is strong evidence that, in pain free states, the 1 

addition of supplementary haptic information significantly alters the activation pattern of the 2 

somatosensory cortex during similar balance tasks (22). This reorganization has previously been 3 

related to activation of the prefrontal cortex (52, 53), which is mainly responsible for controlling 4 

cognitive process of attention (54). It is not clear if similar cortical reorganization might also be 5 

achieved during conditions with pain and light touch in the present study neither to which extent 6 

the subjects directed their attention to the curtain movement (14). However, the improvement of 7 

balance control observed when additional haptic information was provided suggests that higher 8 

centers might have, to a certain degree, re-weighted the sensory information inputs (such as 9 

nociception and haptic) to enhance balance stability (42). This is in line with previous studies 10 

showing that young individuals prioritize balance stability during conditions of postural threat 11 

(55), such as during pain. Indeed, the cognitive processing of pain (56, 57) competes for the 12 

limited attentional resources, impairing performance in motor tasks (57). Therefore, a 13 

complementary explanation for the balance impairments during experimental pain in the present 14 

study, is that the cognitive processing of the experimental pain also acted as a distraction, 15 

disrupting the attention of the subject from the current task (quiet standing) and therefore 16 

increasing postural sway (57). However, during the pain with touch task, the cognitive 17 

processing of pain (58) would have to compete with the processing of supplementary haptic 18 

information (while attempting to keep the curtain as still as possible) potentially lessening its 19 

overall impact on balance (22, 50, 59). 20 

Altogether, it is suggested that healthy young individuals, under the effect of experimental pain, 21 

were able to utilize additional haptic information to reorganize their balance and improve their 22 

postural stability during bipedal posture. Future studies are needed to clarify the extent to which 23 
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the presence of pain affects cognitive load and thereby the integration of the sensory input from 1 

the fingers. 2 

3 

5. Conclusion4 

This is the first evidence that balance impairments, due to experimental pain, in an otherwise 5 

young healthy system, can be significantly decreased by providing extra haptic information from 6 

the index finger. The results of this study reinforce the possibility of improving postural stability 7 

in pain patients by including instructions to maintain the fingertip lightly touching an external 8 

surface during balance rehabilitation routines. 9 

10 
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Figure Legends 

Figure 1. Mean (± SEM, N = 18) center of pressure (CoP) area (A) and velocity in both 

medial-

lateral (B) and anterior-posterior (C) directions during both no touch and light touch 

conditions. Decreased CoP parameters during light touch condition compared no touch 

condition (*, Bonferroni: P < 0.05). The data is pooled between saline and time factors to 

show the difference within the factor condition (Bonferroni: all P < 0.002). 

Figure 2. Mean (± SEM, N = 18) center of pressure (CoP) area and velocity and both 

medial-lateral and anterior-posterior directions during both no touch and light touch 

conditions following isotonic (non-painful) and hypertonic (painful) saline 

injections. The CoP areaincreased during hypertonic saline injection and no touch 

condition compared with baseline and no touch condition (#, Bonferroni: P = 0.003). The 

CoP velocity in both direction increased duringhypertonic injection and no touch condition 

compared with isotonic injection and no touch condition (*, Bonferroni: both P < 0.009). 

The CoP area decreased during baseline and hypertonic injection condition compared 

with baseline and isotonic injection condition (§, Bonferroni: P = 0.04). Additionally, 

when comparing no tough with light touch conditions, CoP area and velocity in both 

directions decreased during the light touch condition during baseline prior isotonic 

injection (¤, Bonferroni: all P < 0.001). The CoP velocity in the medial-lateral direction 

prior hypertonic injection conditions decreased during light touch condition compared with 

no touch condition (£, Bonferroni: P < 0.03). The CoP area and velocity in both direction 

decreased during the light touch condition and hypertonic saline injection compared with 

the condition with no touch and hypertonic injection, (¥, Bonferroni: all P < 0.04). 
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