41 research outputs found

    Recent advances in targeting protein arginine methyltransferase enzymes in cancer therapy

    Get PDF
    Introduction: Exploration in the field of epigenetics has revealed the diverse roles of the protein arginine methyltransferase (PRMT) family of proteins in multiple disease states. These findings have led to the development of specific inhibitors and discovery of several new classes of drugs with potential to treat both benign and malignant conditions. Areas covered: We provide an overview on the role of PRMT enzymes in healthy and malignant cells, highlighting the role of arginine methylation in specific pathways relevant to cancer pathogenesis. Additionally, we describe structure and catalytic activity of PRMT and discuss the mechanisms of action of novel small molecule inhibitors of specific members of the arginine methyltransferase family. Expert opinion: As the field of PRMT biology advances, it’s becoming clear that this class of enzymes is highly relevant to maintaining normal physiologic processes as well and disease pathogenesis. We discuss the potential impact of PRMT inhibitors as a broad class of drugs, including the pleiotropic effects, off target effects the need for more detailed PRMT-centric interactomes, and finally, the potential for targeting this class of enzymes in clinical development of experimental therapeutics for cancer. © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group.The study was funded by the Qatar National Research Fund (QNRF) through the National Priorities Research Program (NPRP) grant [NPRP8-617-3-131].Scopu

    A family of membrane-shaping proteins at ER subdomains regulates pre-peroxisomal vesicle biogenesis

    Get PDF
    Saccharomyces cerevisiae contains three conserved reticulon and reticulon-like proteins that help maintain ER structure by stabilizing high membrane curvature in ER tubules and the edges of ER sheets. A mutant lacking all three proteins has dramatically altered ER morphology. We found that ER shape is restored in this mutant when Pex30p or its homologue Pex31p is overexpressed. Pex30p can tubulate membranes both in cells and when reconstituted into proteoliposomes, indicating that Pex30p is a novel ER-shaping protein. In contrast to the reticulons, Pex30p is low abundance, and we found that it localizes to subdomains in the ER. We show that these ER subdomains are the sites where most preperoxisomal vesicles (PPVs) are generated. In addition, overproduction or deletion of Pex30p or Pex31p alters the size, shape, and number of PPVs. Our findings suggest that Pex30p and Pex31p help shape and generate regions of the ER where PPV biogenesis occurs

    Sec12 Binds to Sec16 at Transitional ER Sites

    Get PDF
    COPII vesicles bud from an ER domain known as the transitional ER (tER). Assembly of the COPII coat is initiated by the transmembrane guanine nucleotide exchange factor Sec12. In the budding yeast Pichia pastoris, Sec12 is concentrated at tER sites. Previously, we found that the tER localization of P. pastoris Sec12 requires a saturable binding partner. We now show that this binding partner is Sec16, a peripheral membrane protein that functions in ER export and tER organization. One line of evidence is that overexpression of Sec12 delocalizes Sec12 to the general ER, but simultaneous overexpression of Sec16 retains overexpressed Sec12 at tER sites. Additionally, when P. pastoris Sec12 is expressed in S. cerevisiae, the exogenous Sec12 localizes to the general ER, but when P. pastoris Sec16 is expressed in the same cells, the exogenous Sec12 is recruited to tER sites. In both of these experimental systems, the ability of Sec16 to recruit Sec12 to tER sites is abolished by deleting a C-terminal fragment of Sec16. Biochemical experiments confirm that this C-terminal fragment of Sec16 binds to the cytosolic domain of Sec12. Similarly, we demonstrate that human Sec12 is concentrated at tER sites, likely due to association with a C-terminal fragment of Sec16A. These results suggest that a Sec12–Sec16 interaction has a conserved role in ER export

    Recent Advances in the Management of Relapsed and Refractory Peripheral T-Cell Lymphomas

    No full text
    Peripheral T-cell lymphomas (PTCLs) are a group of heterogeneous lymphomas with poor overall prognosis, particularly in the setting of relapsed/refractory PTCL. Given the limited efficacy of current therapies, several different novel therapies encompassing multiple different mechanisms of action have been evaluated for relapsed and refractory PTCLs. In this review, we explore the current standard of care for relapsed/refractory PTCL, and evaluate in depth novel and emerging therapies, their scientific basis, and current trials for relapsed/refractory PTCL

    Extranodal Natural Killer/T-Cell Lymphomas: Current Approaches and Future Directions

    No full text
    Extranodal natural killer/T(NK/T)-cell lymphoma (ENKTL) is a rare subtype of non-Hodgkin lymphoma that typically presents with an isolated nasal mass, but a sizeable minority present with advanced stage disease and have a significantly poorer prognosis. Those with limited disease are standardly treated with chemotherapy and radiation while those with advanced stage disease are treated with L-asparaginase containing chemotherapy regimens. The addition of modern radiation therapy techniques and the incorporation of L-asparaginase into chemotherapy regimens have significantly improved outcomes in this disease, but relapses and death from relapsed disease remain frequent. Given the high rate of relapse, several novel therapies have been evaluated for the treatment of this disease. In this review, we explore the current standard of care for ENKTL as well as novel therapies that have been evaluated for its treatment and the biologic understanding behind these therapies
    corecore