13 research outputs found

    Can carbon isotope discrimination and ash content predict grain yield and water use efficiency in wheat?

    No full text
    Drought is the main factor affecting crop grain yield. Increasing grain yield under drought and crop water use efficiency (WUE) is essential for enhancing world crop production and food availability. The objective of this study, carried out in India on 20 durum wheat cultivars, under three water regimes (full irrigation, limited irrigation and residual soil moisture) and during two seasons, was to investigate the potential use of plant traits (particularly carbon isotope discrimination, [Delta], and ash content, ma) to predict grain yield and WUE in wheat. WUE components were estimated using a soil water balance model (Budget) allowing comparison of environments in data scarce situations. A highly significant correlation was noted between grain yield and grain [Delta] across water regimes. However, the associations between grain yield, [Delta] and ma were found to depend highly on the water regime and environmental conditions. The association between grain yield and grain [Delta] was significant under full irrigation in season 1 and under residual soil moisture in season 2. Significant positive correlations were noted in both seasons between grain yield and leaf [Delta] under residual soil moisture and between grain yield and leaf ash content at anthesis under limited irrigation. A significant correlation was found across environments between grain and leaf [Delta] and T, the quantity of water transpired during the growth cycle, as estimated by the soil water balance model. T also significantly correlated to grain and leaf ma. Variation in WUE across environments was driven more by runoff, drainage and soil evaporation than by harvest index and transpiration. The associations between WUE and transpiration, runoff and [Delta] were negative but not significant. WUE was significantly correlated with leaf and grain ma at maturity. The study indicates that [Delta] and ma can be used as indirect selection criteria for grain yield and suggests that ma is a good predictor of transpiration, grain yield and WUE across environments. The use of mechanistic models that allows differentiating between cultivars should permit in a next future to analyze the relationships between WUE, [Delta] and ma across cultivars and evaluate the possibility to use these traits as predictors of WUE in wheat breeding programs.Ash content Carbon isotope discrimination Soil water balance model Transpiration Water use efficiency

    Superhydrophobic PU Sponge Modified by Hydrophobic Silica NPs-Polystyrene Nanocomposite for Oil-Water Separation

    No full text
    In this study, the hydrophobic silica nanoparticles (NPs) are synthesized by simple sol–gel processing of polymethylhydrosiloxane (PMHS). The nanocomposite solution is prepared by adding hydrophobic silica NPs in polystyrene solution and applied on the skeleton of polyurethane sponge by simple immersion-drying process. The as-prepared sponges exhibited superhydrophobic property with water contact angle 161° and oil contact angle nearly 0° and can separate oil from oil–water and oil–muddy water mixture. The superhydrophobic sponge has sustainable anti-wetting property under cross sectional cutting, pressing and twisting, and different pH environment. Such superhydrophobic sponge is suitable for practical application on a large scale.This work is financially supported by DST ? INSPIRE Faculty Scheme, Department of Science and Technology (DST), Govt. of India. [DST/INSPIRE/04/2015/000281]. SSL acknowledges financial assistance from the Henan University, Kaifeng, P. R. China. The authors greatly appreciate the support of the National Natural Science Foundation of China (21950410531).Scopu

    The formation of human populations in South and Central Asia

    No full text
    By sequencing 523 ancient humans, we show that the primary source of ancestry in modern South Asians is a prehistoric genetic gradient between people related to early hunter-gatherers of Iran and Southeast Asia. After the Indus Valley Civilization's decline, its people mixed with individuals in the southeast to form one of the two main ancestral populations of South Asia, whose direct descendants live in southern India. Simultaneously, they mixed with descendants of Steppe pastoralists who, starting around 4000 years ago, spread via Central Asia to form the other main ancestral population. The Steppe ancestry in South Asia has the same profile as that in Bronze Age Eastern Europe, tracking a movement of people that affected both regions and that likely spread the distinctive features shared between Indo-Iranian and Balto-Slavic languages

    Non-human genetics, agricultural origins and historical linguistics in South Asia

    No full text
    corecore