37 research outputs found

    Factors associated with acute kidney injury among preterm infants administered vancomycin: a retrospective cohort study

    Get PDF
    Background Vancomycin (VCM) is a widely used antibiotic for the treatment of gram-positive microorganisms, with some nephrotoxic effects. Recent studies have suggested that piperacillin-tazobactam (TZP) aggravates VCM-induced nephrotoxicity in adults and adolescents. However, there is a lack of research investigating these effects in the newborn population. Therefore, this study investigates whether the concomitant use of TZP with VCM use increases the risk of acute kidney injury (AKI) and to explore the factors associated with AKI in preterm infants treated with VCM. Methods This retrospective study included preterm infants with birth weight < 1,500 g in a single tertiary center who were born between 2018 and 2021 and received VCM for a minimum of 3 days. AKI was defined as an increase in serum creatinine (SCr) of at least 0.3 mg/dL and an increase in SCr of at least 1.5 times baseline during and up to 1 week after discontinuation of VCM. The study population was categorized as those with or without concomitant use of TZP. Data on perinatal and postnatal factors associated with AKI were collected and analyzed. Results Of the 70 infants, 17 died before 7 postnatal days or antecedent AKI and were excluded, while among the remaining participants, 25 received VCM with TZP (VCM + TZP) and 28 VCM without TZP (VCM—TZP). Gestational age (GA) at birth (26.4 ± 2.8 weeks vs. 26.5 ± 2.6 weeks, p = 0.859) and birthweight (750.4 ± 232.2 g vs. 838.1 ± 268.7 g, p = 0.212) were comparable between the two groups. There were no significant differences in the incidence of AKI between groups. Multivariate analysis showed that GA (adjusted OR: 0.58, 95% CI: 0.35–0.98, p = 0.042), patent ductus arteriosus (PDA) (adjusted OR: 5.23, 95% CI: 0.67–41.05, p = 0.115), and necrotizing enterocolitis (NEC) (adjusted OR: 37.65, 95% CI: 3.08–459.96, p = 0.005) were associated with AKI in the study population. Conclusions In very low birthweight infants, concomitant use of TZP did not increase the risk of AKI during VCM administration. Instead, a lower GA, and NEC were associated with AKI in this population

    Coinfection of Viral Agents in Korean Children with Acute Watery Diarrhea

    Get PDF
    Currently, there are a few reports on viral coinfection that causes an acute watery diarrhea in Korean children. So, to evaluate the features of coinfectious viral agents in children with acute watery diarrhea, we enrolled 155 children with acute watery diarrhea from July 2005 to June 2006. Fecal samples were collected and evaluated for various viral infections such as rotavirus, norovirus, adenovirus and astrovirus. The mean (±standard deviation) age of the children was 2.71±2.37 yr. The detection rate of viral agents was most common in children between the ages of 1 and 3 yr. Rotavirus was detected in 63 children (41.3%), norovirus in 56 (36.2%), adenovirus in 11 (7.1%), and astrovirus in 1 (0.6%). Regarding rotavirus, there were 38 (60.3%) cases with monoinfection and 25 (39.7%) with coinfection. For norovirus, there were 33 (58.9%) cases with monoinfection and 23 (41.1%) with coinfection. Coinfection with rotavirus and norovirus was most common, and occurred in 20/155 cases (12.9%) including coinfection with adenovirus. So, rotavirus and norovirus were the most common coinfectious viral agents in our study population with acute watery diarrhea

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    User Behavior Detection Using Multi-Modal Signatures of Encrypted Network Traffic

    No full text
    With the development of the network environment and the emergence of new applications, network traffic has become increasingly complex. This paper focuses on user behavior detection based on encrypted traffic analysis. User behavior information plays a critical role in network management and security, leading to extensive research in this domain. This paper introduces two main contributions. Firstly, we present a categorization method for application types and a behavior definition approach for user behavior detection research. This enables consistent behavior definition for each application type, facilitating objective performance comparison with other studies in the field. Secondly, a behavior detection method based on multi-modal signatures is introduced. The multi-modal signatures represent the multiple signatures extracted from encrypted traffic, including header, SNI, and PSD signatures, which are subsequently defined as a rule. To validate the effectiveness of our proposed method, we conducted 4 experiments on 5 SaaS applications. As a result of the experiments, the proposed method achieves an F-measure of 94&#x007E;99&#x0025; and can detect other types of application behaviors with high performance. As this study conducts user behavior detection research based on encrypted traffic analysis, the proposed method can be applied to other research areas that utilize encrypted traffic

    Solution structure of FK506-binding protein 12 from Aedes aegypti

    No full text
    Dengue remains one of the major public concerns as the virus eludes the immune response. Currently, no vaccines or antiviral therapeutics are available for dengue prevention or treatment. Immunosuppressive drug FK506 shows an antimalarial activity, and its molecular target, FK506-binding protein (FKBP), was identified in human Plasmodium parasites. Likewise, a conserved FKBP family protein has also been identified in Aedes aegypti (AaFKBP12), which is expected to play a similar role in the life cycle of Aedes aegypti, the primary vector of dengue virus infection. As FKBPs belong to a highly conserved class of immunophilin family and are involved in key biological regulations, they are considered as attractive pharmacological targets. In this study, we have determined the nuclear magnetic resonance solution structure of AaFKBP12, a novel FKBP member from Aedes aegypti, and presented its structural features, which may facilitate the design of potential inhibitory ligands against the dengue-transmitting mosquitoes

    Optimal view detection for ultrasound-guided supraclavicular block using deep learning approaches

    No full text
    Abstract Successful ultrasound-guided supraclavicular block (SCB) requires the understanding of sonoanatomy and identification of the optimal view. Segmentation using a convolutional neural network (CNN) is limited in clearly determining the optimal view. The present study describes the development of a computer-aided diagnosis (CADx) system using a CNN that can determine the optimal view for complete SCB in real time. The aim of this study was the development of computer-aided diagnosis system that aid non-expert to determine the optimal view for complete supraclavicular block in real time. Ultrasound videos were retrospectively collected from 881 patients to develop the CADx system (600 to the training and validation set and 281 to the test set). The CADx system included classification and segmentation approaches, with Residual neural network (ResNet) and U-Net, respectively, applied as backbone networks. In the classification approach, an ablation study was performed to determine the optimal architecture and improve the performance of the model. In the segmentation approach, a cascade structure, in which U-Net is connected to ResNet, was implemented. The performance of the two approaches was evaluated based on a confusion matrix. Using the classification approach, ResNet34 and gated recurrent units with augmentation showed the highest performance, with average accuracy 0.901, precision 0.613, recall 0.757, f1-score 0.677 and AUROC 0.936. Using the segmentation approach, U-Net combined with ResNet34 and augmentation showed poorer performance than the classification approach. The CADx system described in this study showed high performance in determining the optimal view for SCB. This system could be expanded to include many anatomical regions and may have potential to aid clinicians in real-time settings. Trial registration The protocol was registered with the Clinical Trial Registry of Korea (KCT0005822, https://cris.nih.go.kr )

    Hemispherically lateralized rhythmic oscillations in the cingulate-amygdala circuit drive affective empathy in mice

    No full text
    Observational fear, a form of emotional contagion, is thought to be a basic form of affective empathy. However, the neural process engaged at the specific moment when socially acquired information provokes an emotional response remains elusive. Here, we show that reciprocal projections between the anterior cingulate cortex (ACC) and basolateral amygdala (BLA) in the right hemisphere are essential for observational fear, and 5–7 Hz neural oscillations were selectively increased in those areas at the onset of observational freezing. A closed-loop disruption demonstrated the causal relationship between 5–7 Hz oscillations in the cingulo-amygdala circuit and observational fear responses. The increase/decrease in theta power induced by optogenetic manipulation of the hippocampal theta rhythm bi-directionally modulated observational fear. Together, these results indicate that hippocampus-dependent 5–7 Hz oscillations in the cingulo-amygdala circuit in the right hemisphere are the essential component of the cognitive process that drives empathic fear, but not freezing, in general. © 2023 Elsevier Inc.11Nsciescopu

    Neural circuits underlying a psychotherapeutic regimen for fear disorders

    No full text
    A psychotherapeutic regimen that uses alternating bilateral sensory stimulation (ABS) has been used to treat post-traumatic stress disorder. However, the neural basis that underlies the long-lasting effect of this treatment—described as eye movement desensitization and reprocessing—has not been identified. Here we describe a neuronal pathway driven by the superior colliculus (SC) that mediates persistent attenuation of fear. We successfully induced a lasting reduction in fear in mice by pairing visual ABS with conditioned stimuli during fear extinction. Among the types of visual stimulation tested, ABS provided the strongest fear-reducing effect and yielded sustained increases in the activities of the SC and mediodorsal thalamus (MD). Optogenetic manipulation revealed that the SC–MD circuit was necessary and sufficient to prevent the return of fear. ABS suppressed the activity of fear-encoding cells and stabilized inhibitory neurotransmission in the basolateral amygdala through a feedforward inhibitory circuit from the MD. Together, these results reveal the neural circuit that underlies an effective strategy for sustainably attenuating traumatic memories. © 2019, The Author(s), under exclusive licence to Springer Nature Limited11Nsci
    corecore