88 research outputs found

    Spatial differences in dissolved silicon utilisation in Lake Baikal, Siberia: examining the impact of high diatom biomass events and eutrophication

    Get PDF
    Recent research has highlighted how Lake Baikal, Siberia, has responded to the direct and indirect effects of climate change (e.g., ice-cover duration), nutrient loading, and pollution, manifesting as changes in phytoplankton/zooplankton populations, community structure, and seasonal succession. Here, we combine and compare= analyses of chlorophyll a (an estimate of total algal biomass), carotenoid pigments (biomarkers of algal groups), and lake water silicon isotope geochemistry (d30SiDSi) to differentiate spatial patterns in dissolved silicon (DSi) uptake at Lake Baikal. A total of 15 sites across the three basins (south, central, and north) of Lake Baikal were sampled in August 2013 along a depth gradient of 0–180 m. Strong, significant correlations were found between vertical profiles of photic zone DSi concentrations and d30SiDSi compositions (r 5 20.81, p < 0.001), although these are strongest in the central basin aphotic zone (r 5 20.98, p < 0.001). Data refute the hypothesis of DSi uptake by picocyanobacteria. Algal biomass profiles and high surface d30SiDSi compositions suggest greater productivity in the south basin and more oligotrophic conditions in the north basin. d30SiDSi signatures are highest at depth (20 m) in central basin sites, indicating greater (10–40%) DSi utilization at deep chlorophyll maxima. DSi limitation occurs in the pelagic central basin, probably reflecting a high diatom biomass bloom event (Aulacoseira baicalensis). Meanwhile in the more hydrologically restricted, shallow Maloe More region (central basin), both high d30SiDSi compositions and picocyanobacteria (zeaxanthin) concentrations, respectively point to the legacy of an “Aulacoseira bloom year” and continuous nutrient supply in summer months (e.g., localized eutrophication)

    Constraining modern day silicon cycling in Lake Baikal

    Get PDF
    Constraining the continental silicon cycle is a key requirement in attempts to understand both nutrient fluxes to the ocean and linkages between silicon and carbon cycling over different timescales. Silicon isotope data of dissolved silica (δ30SiDSi) are presented here from Lake Baikal and its catchment in central Siberia. As well as being the world's oldest and voluminous lake, Lake Baikal lies within the seventh largest drainage basin in the world and exports significant amounts of freshwater into the Arctic Ocean. Data from river waters accounting for c. 92% of annual river inflow to the lake suggest no seasonal alteration or anthropogenic impact on river δ30SiDSi composition. The absence of a change in δ30SiDSi within the Selenga Delta, through which 62% of riverine flow passes, suggest a net balance between biogenic uptake and dissolution in this system. A key feature of this study is the use of δ30SiDSi to examine seasonal and spatial variations in DSi utilisation and export across the lake. Using an open system model against deep water δ30SiDSi values from the lake, we estimate that 20-24% of DSi entering Lake Baikal is exported into the sediment record. Whilst highlighting the impact that lakes may have upon the sequestration of continental DSi, mixed layer δ30SiDSi values from 2003 and 2013 show significant spatial variability in the magnitude of spring bloom nutrient utilisation with lower rates in the north relative to south basin

    Impact of lake level change on deep-water renewal and oxic conditions in deep saline Lake Van, Turkey

    Get PDF
    Changes in the hydrological regime of the saline closed basin Lake Van, a large, deep lake in eastern Turkey, resulted in a lake level increase by about 2 m between 1988 and 1995, followed by a 1.5 m decrease until 2003 and a relatively constant lake level thereafter. Based on measurements of transient tracers (sulfur hexafluoride, CFC-12, 3H, 3He, 4He, Ne), dissolved oxygen, light transmission, conductivity-temperature-depth profiles, and thermistor data, we investigate the implications associated with lake level fluctuations for deep-water renewal and oxygenation. Our data suggest that deep-water renewal was significantly reduced in Lake Van between 1990 and 2005. This change in mixing conditions resulted in the formation of a more than 100 m thick anoxic deep-water body below 325 m depth. Apparently, the freshwater inflows responsible for the lake level rise between 1988 and 1995 decreased the salinity of the surface water sufficiently that the generation of density plumes during winter cooling was substantially reduced compared to that in the years before the lake level rise. Significant renewal and oxygenation of the deep water did not occur until at least 2005, although by 2003 the lake level was back to almost the same level as in 1988. This study suggests that short-term changes in the hydrological regime, resulting in lake level changes of a couple of meters, can lead to significant and long-lasting changes in deep-water renewal and oxic conditions in deep saline lakes

    Modelling silicon supply during the Last Interglacial (MIS 5e) at Lake Baikal

    Get PDF
    Limnological reconstructions of primary productivity have demonstrated its response over Quaternary timescales to drivers such as climate change, landscape evolution and lake ontogeny. In particular, sediments from Lake Baikal, Siberia, provide a valuable uninterrupted and continuous sequence of biogenic silica (BSi) records, which document orbital and sub-orbital frequencies of regional climate change. We here extend these records via the application of stable isotope analysis of silica in diatom opal (δ30Sidiatom) from sediments covering the Last Interglacial cycle (Marine Isotope Stage [MIS] 5e; c. 130 to 115 ka BP) as a means to test the hypothesis that it was more productive than the Holocene. δ30Sidiatom data for the Last Interglacial range between +1.29 to +1.78‰, with highest values between c. 127 to 124 ka BP (+1.57 to +1.78‰). Results show that diatom dissolved silicon (DSi) utilisation, was significantly higher (p=0.001) during MIS 5e than the current interglacial, which reflects increased diatom productivity over this time (concomitant with high diatom biovolume accumulation rates [BVAR] and warmer pollen-inferred vegetation reconstructions). Diatom BVAR are used, in tandem with δ30Sidiatom data, to model DSi supply to Lake Baikal surface waters, which shows that highest delivery was between c. 123 to 120 ka BP (reaching peak supply at c. 120 ka BP). When constrained by sedimentary mineralogical archives of catchment weathering indices (e.g. the Hydrolysis Index), data highlight the small degree of weathering intensity and therefore representation that catchment-weathering DSi sources had, over the duration of MIS 5e. Changes to DSi supply are therefore attributed to variations in within-lake conditions (e.g. turbulent mixing) over the period, where periods of both high productivity and modelled-DSi supply (e.g. strong convective mixing) account for the decreasing trend in δ30Sidiatom compositions (after c. 124 ka BP)

    Siliceous microfossil distribution in the surficial sediments of Lake Baikal

    Full text link
    Examination of surficial sediments at 16 stations shows minor, but consistent differences in the numbers and kinds of siliceous microfossils deposited in different regions of Lake Baikal. There is a general north-south decreasing trend in total microfossil abundance on a weight basis. Endemic plankton diatom species are the most abundant component of assemblages at all stations. Chrysophyte cysts are present at all stations, but most forms are more abundant at northern stations. Non-endemic plankton diatom species are most abundant at southern stations. Small numbers of benthic diatoms and sponge spicules are found in all samples. Although low numbers are present in offshore sediments, the benthic diatom flora is very diverse. Principal components analysis confirms primary north-south abundance trends and suggests further differentiation by station location and depth.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43071/1/10933_2004_Article_BF00682594.pd

    Changes in the Heat Content of Water Column in the Slope Area of the Southern Basin of Lake Baikal in the 21st Century

    No full text
    Climate change influences the temperature, ice and thermal regimes of lakes in the Northern Hemisphere. This study discusses the change in the heat content of the water column in the slope area of the southern basin of Lake Baikal under the influence of climate for the past 20 years. We clarify the seasonal variability of heat content in different water layers selected taking into account temperature and dynamic characteristics. During the study period, the value of heat content increased in the upper water layer (45–100 m) only in May (12.4 (MJ/m2)/year). In the water layers deeper than 100 m, the value of heat content decreased: −3–−4 (MJ/m2)/year from July to September in a layer of 100–300 m, −9–−13 (MJ/m2)/year in all months in a layer of 300–1100 m and −1.5–−3 (MJ/m2)/year in all months, except for January in a layer of 1100 m–bottom. Despite the revealed trends of the change in the heat content, the annual heat circulation remained within the normal range and did not have any trends
    corecore