220 research outputs found
Interaction of Agulhas filaments with mesoscale turbulence: a case study
The inter-ocean leakage of heat and salt from the South Indian Ocean to the South Atlantic has important consequences for the global thermohaline circulation and in particular for the strength of overturning of the Atlantic Ocean as a whole. This leakage between these two subtropical gyres takes place south of Africa. The main mechanisms are the intermittent shedding of Agulhas rings from the retroflection of the Agulhas Current and the advection of Agulhas filaments from the border of the Agulhas Current, both of which move northwestward into the South Atlantic. The subsequent behaviour and mixing of Agulhas rings has been much studied over the past years, that of Agulhas filaments not at all. We report here on fortuitous hydrographic observations of the behaviour of an Agulhas filament that interacted with a number of mesoscale features shortly after formation. This suggests that Agulhas filaments may be involved in many other circulation elements and not only the Benguela upwelling front, as was surmised previously, and may mix out in a very site-specific region
Recommended from our members
Variability in satellite winds over the Benguela upwelling system during 1999â2000
Wind stress variability over the Benguela upwelling system is considered using 16 months (01 August 1999 to 29 November 2000) of satellite-derived QuikSCAT wind data. Variability is investigated using a type of artificial neural network, the self-organizing map (SOM), and a wavelet analysis. The SOM and wavelet analysis are applied to an extracted data set to find that the system may be divided into six discrete wind regimes. The wavelet power spectra for these wind regions span a range of frequencies from 4 to 64 days, with each region appearing to contain distinct periodicities. To the north, 10°â23.5°S, the majority of the power occurs during austral winter, with a 4â16 day periodicity. Further investigation of National Centers for Environmental Prediction reanalysis outgoing longwave radiation data indicates that the winter intensification of wind stress off the Angolan coast is linked with convective activity over equatorial West Africa. The summer activity appears to be linked with the intensification of the Angolan heat low. Convective activity over the Congo basin appears to impact upon wind stress variability, off the Angolan coast, throughout the year. Farther south, 24°â 35°S, the majority of the power occurs in the summer. Here a bimodal distribution occurs, with peaks of 4â12 and 25â50 days. The southernmost regions appear to be forced at higher frequencies by both midlatitude cyclones (austral winter) and mesoscale coastal lows (austral summer). At lower frequencies, eastward propagating periodic wind events that originate over eastern South America appear to be important to the forcing of wind stress over the southern Benguela
Reviewing evidence of marine ecosystem change off South Africa
Recent changes have been observed in South African marine ecosystems. The main pressures on these
ecosystems are fishing, climate change, pollution, ocean acidification and mining. The best long-term datasets are
for trends in fishing pressures but there are many gaps, especially for non-commercial species. Fishing pressures
have varied over time, depending on the species being caught. Little information exists for trends in other
anthropogenic pressures. Field observations of environmental variables are limited in time and space. Remotely
sensed satellite data have improved spatial and temporal coverage but the time-series are still too short to
distinguish long-term trends from interannual and decadal variability. There are indications of recent cooling on the
West and South coasts and warming on the East Coast over a period of 20 - 30 years. Oxygen concentrations on the
West Coast have decreased over this period. Observed changes in offshore marine communities include southward
and eastward changes in species distributions, changes in abundance of species, and probable alterations in
foodweb dynamics. Causes of observed changes are difficult to attribute. Full understanding of marine ecosystem
change requires ongoing and effective data collection, management and archiving, and coordination in carrying out
ecosystem research.DHE
Acquisition of a Unique Onshore/Offshore Geophysical and Geochemical Dataset in the Northern Malawi (Nyasa) Rift
The Study of Extension and maGmatism in Malawi aNd Tanzania (SEGMeNT) project acquired a comprehensive suite of geophysical and geochemical datasets across the northern Malawi (Nyasa) rift in the East Africa rift system. Onshore/offshore active and passive seismic data, longâperiod and wideband magnetotelluric data, continuous Global Positioning System data, and geochemical samples were acquired between 2012 and 2016. This combination of data is intended to elucidate the sedimentary, crustal, and upperâmantle architecture of the rift, patterns of active deformation, and the origin and age of riftârelated magmatism. A unique component of our program was the acquisition of seismic data in Lake Malawi, including seismic reflection, onshore/offshore wideâangle seismic reflection/refraction, and broadband seismic data from lakeâbottom seismometers, a towed streamer, and a large towed airâgun source
Response of a multi-domain continental margin to compression: study from seismic reflection-refraction and numerical modelling in the Tagus Abyssal Plain
The effects of the Miocene through Present compression in the Tagus Abyssal Plain are mapped using the most up to date available to scientific community multi-channel seismic reflection and refraction data. Correlation of the rift basin fault pattern with the deep crustal structure is presented along seismic line IAM-5. Four structural domains were recognized. In the oceanic realm mild deformation concentrates in Domain I adjacent to the Tore-Madeira Rise. Domain 2 is characterized by the absence of shortening structures, except near the ocean-continent transition (OCT), implying that Miocene deformation did not propagate into the Abyssal Plain, In Domain 3 we distinguish three sub-domains: Sub-domain 3A which coincides with the OCT, Sub-domain 3B which is a highly deformed adjacent continental segment, and Sub-domain 3C. The Miocene tectonic inversion is mainly accommodated in Domain 3 by oceanwards directed thrusting at the ocean-continent transition and continentwards on the continental slope. Domain 4 corresponds to the non-rifted continental margin where only minor extensional and shortening deformation structures are observed. Finite element numerical models address the response of the various domains to the Miocene compression, emphasizing the long-wavelength differential vertical movements and the role of possible rheologic contrasts. The concentration of the Miocene deformation in the transitional zone (TC), which is the addition of Sub-domain 3A and part of 3B, is a result of two main factors: (1) focusing of compression in an already stressed region due to plate curvature and sediment loading; and (2) theological weakening. We estimate that the frictional strength in the TC is reduced in 30% relative to the surrounding regions. A model of compressive deformation propagation by means of horizontal impingement of the middle continental crust rift wedge and horizontal shearing on serpentinized mantle in the oceanic realm is presented. This model is consistent with both the geological interpretation of seismic data and the results of numerical modelling. (C) 2008 Elsevier B.V. All rights reserved.Instituto Nacional de Engenharia, Tecnologia e Inovacao(INETI); Landmark Graphics Corporation; Landmark University Grant Program; LATTEX/IDL [ISLF-5-32]; FEDERinfo:eu-repo/semantics/publishedVersio
Large-scale mass wasting in the western Indian Ocean constrains onset of East African rifting
Faulting and earthquakes occur extensively along the flanks of the East African Rift System, including an offshore branch in the western Indian Ocean, resulting in remobilization of sediment in the form of landslides. To date, constraints on the occurrence of submarine landslides at margin scale are lacking, leaving unanswered a link between rifting and slope instability. Here, we show the first overview of landslide deposits in the post-Eocene stratigraphy of the Tanzania margin and we present the discovery of one of the biggest landslides on Earth: the Mafia mega-slide. The emplacement of multiple landslides, including the Mafia mega-slide, during the early-mid Miocene is coeval with cratonic rifting in Tanzania, indicating that plateau uplift and rifting in East Africa triggered large and potentially tsunamigenic landslides likely through earthquake activity and enhanced sediment supply. This study is a first step to evaluate the risk associated with submarine landslides in the region
Elucidating the clinical and molecular spectrum of SMARCC2-associated NDD in a cohort of 65 affected individuals
Purpose: Coffin-Siris and Nicolaides-Baraitser syndromes are recognizable neurodevelopmental disorders caused by germline variants in BAF complex subunits. The SMARCC2 BAFopathy was recently reported. Herein, we present clinical and molecular data on a large cohort. Methods: Clinical symptoms for 41 novel and 24 previously published affected individuals were analyzed using the Human Phenotype Ontology. For genotype-phenotype correlations, molecular data were standardized and grouped into non-truncating and likely gene-disrupting (LGD) variants. Missense variant protein expression and BAF-subunit interactions were examined using 3D protein modeling, co-immunoprecipitation, and proximity-ligation assays. Results: Neurodevelopmental delay with intellectual disability, muscular hypotonia, and behavioral disorders were the major manifestations. Clinical hallmarks of BAFopathies were rare. Clinical presentation differed significantly, with LGD variants being predominantly inherited and associated with mildly reduced or normal cognitive development, whereas non-truncating variants were mostly de novo and presented with severe developmental delay. These distinct manifestations and non-truncating variant clustering in functional domains suggest different pathomechanisms. In vitro testing showed decreased protein expression for N-terminal missense variants similar to LGD. Conclusion: This study improved SMARCC2 variant classification and identified discernible SMARCC2-associated phenotypes for LGD and non-truncating variants, which were distinct from other BAFopathies. The pathomechanism of most non-truncating variants has yet to be investigated
- âŠ