17 research outputs found

    Detection and monitoring of Drosophila suzukii in raspberry and cherry orchards with volatile organic compounds in the USA and Europe

    Get PDF
    Spotted wing drosophila (SWD) causes significant economic loss in fruit crops to growers worldwide. There is immediate need for efficacious and selective monitoring tools that can detect infestations early. Previously, volatile organic compounds derived from apple were studied and a quinary chemical component blend (QB) was identified as the key SWD attractant in a blueberry orchard in the United States. This study’s aim was to determine whether previously observed QB efficacy, selectivity, and early detection levels could be attained within raspberry and cherry fields in the USA and Europe. Results demonstrated that sticky trap baited QB dispenser provided earlier SWD detection potential than the usually adopted apple cider vinegar (ACV) trap. The number of SWD captured/trap by QB baited trapping systems was significantly lower than that of the ACV trap. However, percent SWD/trap of QB baited traps was same within cherry. Lower non-target capture will save farmer/grower’s labor and time allocated to traps installation and drosophila species identification. Within the USA, SWD selectivity of QB baited liquid traps was consistently greater than sticky trap in raspberry field, suggesting that the QB dispenser can be an alternative to the standard ACV lure and that trap design could improve selectivity further.info:eu-repo/semantics/publishedVersio

    More than smell - COVID-19 is associated with severe impairment of smell, taste, and chemesthesis

    Get PDF
    Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, generally lacked quantitative measurements, were mostly restricted to data from single countries. Here, we report the development, implementation and initial results of a multi-lingual, international questionnaire to assess self-reported quantity and quality of perception in three distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, 8 other, ages 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change+/-100) revealed a mean reduction of smell (-79.7+/- 28.7, mean+/- SD), taste (-69.0+/- 32.6), and chemesthetic (-37.3+/- 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell, but also affects taste and chemesthesis. The multimodal impact of COVID-19 and lack of perceived nasal obstruction suggest that SARS-CoV-2 infection may disrupt sensory-neural mechanisms.Additional co-authors: Veronica Pereda-Loth, Shannon B Olsson, Richard C Gerkin, Paloma Rohlfs DomĂ­nguez, Javier Albayay, Michael C. Farruggia, Surabhi Bhutani, Alexander W Fjaeldstad, Ritesh Kumar, Anna Menini, Moustafa Bensafi, Mari Sandell, Iordanis Konstantinidis, Antonella Di Pizio, Federica Genovese, Lina ÖztĂŒrk, Thierry Thomas-Danguin, Johannes Frasnelli, Sanne Boesveldt, Özlem Saatci, Luis R. Saraiva, Cailu Lin, JĂ©rĂŽme Golebiowski, Liang-Dar Hwang, Mehmet Hakan Ozdener, Maria Dolors GuĂ rdia, Christophe Laudamiel, Marina Ritchie, Jan HavlĂ­cek, Denis Pierron, Eugeni Roura, Marta Navarro, Alissa A. Nolden, Juyun Lim, KL Whitcroft, Lauren R. Colquitt, Camille Ferdenzi, Evelyn V. Brindha, Aytug Altundag, Alberto Macchi, Alexia Nunez-Parra, Zara M. Patel, SĂ©bastien Fiorucci, Carl M. Philpott, Barry C. Smith, Johan N Lundström, Carla Mucignat, Jane K. Parker, Mirjam van den Brink, Michael Schmuker, Florian Ph.S Fischmeister, Thomas Heinbockel, Vonnie D.C. Shields, Farhoud Faraji, Enrique Enrique SantamarĂ­a, William E.A. Fredborg, Gabriella Morini, Jonas K. Olofsson, Maryam Jalessi, Noam Karni, Anna D'Errico, Rafieh Alizadeh, Robert Pellegrino, Pablo Meyer, Caroline Huart, Ben Chen, Graciela M. Soler, Mohammed K. Alwashahi, Olagunju Abdulrahman, Antje Welge-LĂŒssen, Pamela Dalton, Jessica Freiherr, Carol H. Yan, Jasper H. B. de Groot, Vera V. Voznessenskaya, Hadar Klein, Jingguo Chen, Masako Okamoto, Elizabeth A. Sell, Preet Bano Singh, Julie Walsh-Messinger, Nicholas S. Archer, Sachiko Koyama, Vincent Deary, HĂŒseyin Yanik, Samet Albayrak, Lenka Martinec NovĂĄkov, Ilja Croijmans, Patricia Portillo Mazal, Shima T. Moein, Eitan Margulis, Coralie Mignot, Sajidxa Mariño, Dejan Georgiev, Pavan K. Kaushik, Bettina Malnic, Hong Wang, Shima Seyed-Allaei, Nur Yoluk, Sara Razzaghi, Jeb M. Justice, Diego Restrepo, Julien W Hsieh, Danielle R. Reed, Thomas Hummel, Steven D Munger, John E Haye

    Herbivores

    No full text
    This book provides an overview of the current knowledge of herbivory. This book contains chapters from a wide variety of topics that fall into the following broad sections: (I) ""Plant Defense Mechanisms and Herbivore Adaptations,"" (II) ""Herbivory and Food Processing of Grazing Animals,"" and (III) ""Herbivory Effects on Plant Communities."" More specifically, the contributions of this book, written by experts in their respective fields, focus on topics including the chemical plant defense against herbivores as well as herbivore adaptions to plant cyanide defenses, the utilization of biomarkers to study grazing behavior of ruminants, modeling for describing ruminant herbivory, as well as improving grain processing to improve dairy cow performance. Contributions on positive indirect interactions in marine herbivores and algae are included, as is one focusing on herbivory by lizards. These chapters represent recent contributions showing the diversity of ongoing research in this field of study. This book targets a wide audience of general biologists as well as botanists, ecologists, and zoologists including both teachers and students in gaining a better appreciation of this rapidly growing field

    Neurophysiological and behavioral responses of gypsy moth larvae to insect repellents: DEET, IR3535, and picaridin.

    No full text
    The interactions between insect repellents and the olfactory system have been widely studied, however relatively little is known about the effects of repellents on the gustatory system of insects. In this study, we show that the gustatory receptor neuron (GRN) located in the medial styloconic sensilla on the maxillary palps of gypsy moth larvae, and known to be sensitive to feeding deterrents, also responds to the insect repellents DEET, IR3535, and picaridin. These repellents did not elicit responses in the lateral styloconic sensilla. Moreover, behavioral studies demonstrated that each repellent deterred feeding. This is the first study to show perception of insect repellents by the gustatory system of a lepidopteran larva and suggests that detection of a range of bitter or aversive compounds may be a broadly conserved feature among insects

    Representative traces of responses elicited from gustatory receptor neurons contained in the medial and lateral styloconic sensilla of <i>Lymantria dispar</i> larvae to various stimuli.

    No full text
    <p>(A) 30 mM KCl (lateral), (B) 10 mM Picaridin (lateral), (C) 30 mM KCl (medial), (D) 10 mM DEET (Medial), (E) 10 mM IR3535 (Medial), (F) 10 mM Picaridin (Medial) (G) a mixture of 10 mM DEET, IR3535, and picaridin, (H) 10 mM caffeine, and (I) a mixture of 10 mM caffeine and 10 mM each of DEET, IR3535, and picaridin. Stimulations of lateral styloconic sensilla with the three repellents, picaridin (shown above in B), IR3535, or DEET did not elicit responses from the gustatory receptor neurons. Up-arrowheads represent the response of the large-amplitude deterrent-sensitive neuron and bars represent the response of the small-amplitude KCl-sensitive neuron.</p

    Dose response curves (in percent mean consumption) to increasing concentrations of (A) IR3535, (B) picaridin, and (C) DEET.

    No full text
    <p>Asterisks denote the concentration of repellent that significantly decreased feeding relative to the control. Vertical bars represent standard errors.</p

    Figure 4

    No full text
    <p>A. Representative traces of responses elicited by the deterrent-sensitive neuron in the medial styloconic sensilla to increasing concentrations of (A) IR3535 (B) Picaridin and (C) DEET. Up-arrowheads represent the response of the large-amplitude deterrent-sensitive neuron.</p

    Temporal dynamics of the response of the deterrent-sensitive neuron to 10 mM concentrations of (A) IR3535, (B) picaridin, and (C) DEET.

    No full text
    <p>All repellents elicited a phasic-tonic firing pattern which peaked within the first 100–200 ms following stimulus onset and gradually decreased over the next 800 ms for picaridin and 1000 ms for both DEET and IR3535. A tonic rate of activity (marked by an asterisk) occurred after 1200 ms for picaridin and 1300 ms for DEET and IR3535.</p
    corecore