138 research outputs found

    Human Hepatocytes with Drug Metabolic Function Induced from Fibroblasts by Lineage Reprogramming

    Get PDF
    SummaryObtaining fully functional cell types is a major challenge for drug discovery and regenerative medicine. Currently, a fundamental solution to this key problem is still lacking. Here, we show that functional human induced hepatocytes (hiHeps) can be generated from fibroblasts by overexpressing the hepatic fate conversion factors HNF1A, HNF4A, and HNF6 along with the maturation factors ATF5, PROX1, and CEBPA. hiHeps express a spectrum of phase I and II drug-metabolizing enzymes and phase III drug transporters. Importantly, the metabolic activities of CYP3A4, CYP1A2, CYP2B6, CYP2C9, and CYP2C19 are comparable between hiHeps and freshly isolated primary human hepatocytes. Transplanted hiHeps repopulate up to 30% of the livers of Tet-uPA/Rag2āˆ’/āˆ’/Ī³cāˆ’/āˆ’ mice and secrete more than 300Ā Ī¼g/ml human ALBUMIN inĀ vivo. Our data demonstrate that human hepatocytes with drug metabolic function can be generated by lineage reprogramming, thus providing a cell resource for pharmaceutical applications

    A two-step lineage reprogramming strategy to generate functionally competent human hepatocytes from fibroblasts

    Get PDF
    Terminally differentiated cells can be generated by lineage reprogramming, which is, however, hindered by incomplete conversion with residual initial cell identity and partial functionality. Here, we demonstrate a new reprogramming strategy by mimicking the natural regeneration route, which permits generating expandable hepatic progenitor cells and functionally competent human hepatocytes. Fibroblasts were first induced into human hepatic progenitor-like cells (hHPLCs), which could robustly expand in vitro and efficiently engraft in vivo. Moreover, hHPLCs could be efficiently induced into mature human hepatocytes (hiHeps) in vitro, whose molecular identity highly resembles primary human hepatocytes (PHHs). Most importantly, hiHeps could be generated in large quantity and were functionally competent to replace PHHs for drug-metabolism estimation, toxicity prediction and hepatitis B virus infection modeling. Our results highlight the advantages of the progenitor stage for successful lineage reprogramming. This strategy is promising for generating other mature human cell types by lineage reprogramming.</p

    Long-term functional maintenance of primary human hepatocytes in vitro

    Get PDF
    The maintenance of terminally differentiated cells, especially hepatocytes, in vitro has proven challenging. Here we demonstrated the long-term in vitro maintenance of primary human hepatocytes (PHHs) by modulating cell signaling pathways with a combination of five chemicals (5C). 5C-cultured PHHs showed global gene expression profiles and hepatocyte-specific functions resembling those of freshly isolated counterparts. Furthermore, these cells efficiently recapitulated the entire course of hepatitis B virus (HBV) infection over 4 weeks with the production of infectious viral particles and formation of HBV covalently closed circular DNA. Our study demonstrates that, with a chemical approach, functional maintenance of PHHs supports long-term HBV infection in vitro, providing an efficient platform for investigating HBV cell biology and antiviral drug screening.</p

    Activation of PI3K/mTOR pathway occurs in most adult low-grade gliomas and predicts patient survival

    Get PDF
    Recent evidence suggests the Akt-mTOR pathway may play a role in development of low-grade gliomas (LGG). We sought to evaluate whether activation of this pathway correlates with survival in LGG by examining expression patterns of proteins within this pathway. Forty-five LGG tumor specimens from newly diagnosed patients were analyzed for methylation of the putative 5ā€²-promoter region of PTEN using methylation-specific PCR as well as phosphorylation of S6 and PRAS40 and expression of PTEN protein using immunohistochemistry. Relationships between molecular markers and overall survival (OS) were assessed using Kaplan-Meier methods and exact log-rank test. Correlation between molecular markers was determined using the Mann-Whitney U and Spearman Rank Correlation tests. Eight of the 26 patients with methylated PTEN died, as compared to 1 of 19 without methylation. There was a trend towards statistical significance, with PTEN methylated patients having decreased survival (PĀ =Ā 0.128). Eight of 29 patients that expressed phospho-S6 died, whereas all 9 patients lacking p-S6 expression were alive at last follow-up. There was an inverse relationship between expression of phospho-S6 and survival (PĀ =Ā 0.029). There was a trend towards decreased survival in patients expressing phospho-PRAS40 (PĀ =Ā 0.077). Analyses of relationships between molecular markers demonstrated a statistically significant positive correlation between expression of p-S6(235) and p-PRAS40 (PĀ =Ā 0.04); expression of p-S6(240) correlated positively with PTEN methylation (PĀ =Ā 0.04) and negatively with PTEN expression (PĀ =Ā 0.03). Survival of LGG patients correlates with phosphorylation of S6 protein. This relationship supports the use of selective mTOR inhibitors in the treatment of low grade glioma
    • ā€¦
    corecore