
Cell Stem Cell

Short Article
Human Hepatocytes with Drug Metabolic Function
Induced from Fibroblasts by Lineage Reprogramming
Yuanyuan Du,1,7 Jinlin Wang,2,7 Jun Jia,1,2,7 Nan Song,1,2,7 Chengang Xiang,1,7 Jun Xu,1 Zhiyuan Hou,4 Xiaohua Su,1

Bei Liu,2 Tao Jiang,5 Dongxin Zhao,1 Yingli Sun,6 Jian Shu,1 Qingliang Guo,5 Ming Yin,1 Da Sun,2 Shichun Lu,5,* Yan Shi,2,*
and Hongkui Deng1,2,3,*
1The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences,
Peking University, Beijing 100871, China
2Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School,

Shenzhen 518055, China
3Peking University Stem Cell Research Center, Department of Cell Biology, School of Basic Medical Sciences, Peking University Health
Science Center, Beijing 100191, China
4Beijing Vitalstar Biotechnology, Beijing 100012, China
5Department of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing 100853, China
6Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101,
China
7These authors contributed equally to this work

*Correspondence: lsc620213@aliyun.com (S.L.), shiyan@pkusz.edu.cn (Y.S.), hongkui_deng@pku.edu.cn (H.D.)
http://dx.doi.org/10.1016/j.stem.2014.01.008
SUMMARY

Obtaining fully functional cell types is a major chal-
lenge for drug discovery and regenerative medicine.
Currently, a fundamental solution to this key problem
is still lacking. Here, we show that functional human
induced hepatocytes (hiHeps) can be generated
from fibroblasts by overexpressing the hepatic fate
conversion factors HNF1A, HNF4A, and HNF6 along
with the maturation factors ATF5, PROX1, and
CEBPA. hiHeps express a spectrum of phase I and
II drug-metabolizing enzymes and phase III drug
transporters. Importantly, the metabolic activities of
CYP3A4, CYP1A2, CYP2B6, CYP2C9, and
CYP2C19 are comparable between hiHeps and
freshly isolated primary human hepatocytes. Trans-
planted hiHeps repopulate up to 30% of the livers
of Tet-uPA/Rag2�/�/gc�/� mice and secrete more
than 300 mg/ml human ALBUMIN in vivo. Our data
demonstrate that human hepatocytes with drug
metabolic function can be generated by lineage re-
programming, thus providing a cell resource for
pharmaceutical applications.

INTRODUCTION

Functional human cell types are in high demand in the field of

regenerative medicine and drug development. They show great

potential for repairing or replacing diseased and damaged tis-

sues and can be valuable tools for pharmaceutical applications.

However, the application of functional human cell types in these

areas is limited due to a shortage of donors (Castell et al., 2006).

To solve this dilemma, novel strategies for generating function-

ally mature cells are in high demand. Recently, lineage reprog-

ramming has emerged as an effective method for changing the
394 Cell Stem Cell 14, 394–403, March 6, 2014 ª2014 Elsevier Inc.
fate of somatic cells (Vierbuchen and Wernig, 2012). In principle,

one cell type can be converted directly to the final mature state of

another cell type and can bypass its intermediate states during

lineage reprogramming. Consequently, functionally mature cells

may be obtained using this strategy and may potentially provide

a promising source of functional human cells.

Functional human hepatocytes are the most significant in vitro

model for evaluating drug metabolism and are potentially widely

applicable in pharmaceutical development. Because unaccept-

ablemetabolic and toxicity effects on the liver are largely respon-

sible for the failure of new chemical entities in drug discovery

(Baranczewski et al., 2006), it is essential to use human hepato-

cytes, which serve as the closest in vitro model of human liver in

assays of absorption, distribution, metabolism, excretion, and

toxicity (ADME/Tox), to identify compounds that display favor-

able pharmacokinetics (Sahi et al., 2010). Currently, primary

human hepatocytes that are derived from individuals with

different genetic backgrounds are frequently used in drug devel-

opment, but the resulting diversity of genetic backgrounds

hinders the reproducibility of the results obtained from pharma-

ceutical studies using these cells. Additionally, the scarcity of

human liver donors greatly limits the use of primary human hepa-

tocytes (Castell et al., 2006) and, as a result, alternative re-

sources for human hepatocytes with a high reproducibility are

urgently required for use in drug discovery.

Different strategies to generate functional hepatocytes have

been studied. Human hepatocytes have been derived from

human pluripotent stem cells by directed differentiation (Cai

et al., 2007; Ogawa et al., 2013; Takebe et al., 2013; Zhao

et al., 2013). This strategy has progressed quickly in recent

years, although the immature phenotype of the cells derived

from pluripotent stem cells remains a technological obstacle.

In principle, fully functional hepatocytes are relatively difficult

to obtain using this method, as the whole process involves

multiple key steps that affect the final stage of hepatocyte for-

mation. In contrast, lineage reprogramming allows the lineage

conversion of a somatic cell without passing through an

intermediate state. Although mouse hepatocytes have been
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transdifferentiated from fibroblasts (Huang et al., 2011; Sekiya

and Suzuki, 2011), these cells still express several hepatoblast

markers such as a-fetoprotein (AFP) and lack the expression of

several key cytochrome P450 enzymes (CYPs) that are respon-

sible for drug metabolism, suggesting a functionally immature

phenotype for these cells (Willenbring, 2011). Most importantly,

it is still unknown whether human hepatocytes with metabolic

function can be generated by lineage reprogramming.

In this study, we sought to generate functional human hepato-

cytes from fibroblasts by ectopically expressing hepatic fate

conversion factors together with maturation factors. With this

strategy, we were able to readily and reproducibly generate hu-

man induced hepatocytes (hiHeps) that possess drug metabolic

function and are potentially applicable for drug development.

RESULTS

Identification of Factors that Induce Hepatic Fate
To identify the combination of transcription factors that induce

human embryonic fibroblasts (HEFs) into hepatocytes, we

selected a pool of transcription factors (Table S1 available online)

that were previously shown to be expressed in human hepato-

cytes and are crucial to the determination of hepatic cell fate

(Nagaoka and Duncan, 2010; Zaret, 2008). Previous studies

also showed that proliferation arrest and cell death are general

barriers to cell reprogramming (Huang et al., 2011; Zhao et al.,

2008), and therefore MYC and p53 small interfering RNAs

(siRNAs) were employed in the reprogramming process (Fig-

ure S1A). Briefly, HNF1A and HNF4A are preferentially consid-

ered because of their critical role in both embryonic and adult

liver among the 17 transcription factors. Then we screened addi-

tional factors using a ‘‘2+1’’ strategy by the addition of one candi-

date factor at a time to the combination of HNF1A and HNF4A.

We found that HNF6, cooperating with HNF4A and HNF1A,

can result in a high percentage of ALBUMIN (ALB)-positive cells

within 20 days (Figures S1B and S1C). These three factor-

induced hepatocyte-like cells (3H cells) exhibited some hepatic

properties, including glycogen synthesis and low-density lipo-

protein (LDL) uptake (Figures S1D and S1E). However, the

expression level of ALB in these cells was extremely low (Fig-

ure S1F). Moreover, the expression of the major cytochrome

P450 enzymes in hepatocytes was not detected in these cells

(Figure S1G). Therefore, the 3H cells appear to be functionally

immature, implying that additional factors are required for their

full maturation.

Identification of Factors that Generate Mature
Hepatocytes
To identify the factors capable of inducing the functional matura-

tion of hepatocyte-like cells, we performed a global gene ex-

pression analysis on 3H cells, freshly isolated primary human

hepatocytes (F-HEPs), and fetal liver cells. Differential ex-

pression of several hepatic transcription factors, including

CEBPA, ATF5, and PROX1, were observed among the three

samples (data not shown). These three genes were expressed

at relatively low levels in the 3H cells and in fetal hepatocytes

compared to the levels in adult hepatocytes. This difference

was further confirmed by quantitative PCR (Figures 1A and

S1H). Among these genes, PROX1 was shown in our recent
C

study to be a key transcription factor that is critical in the meta-

bolic maturation of hepatocytes (Zhao et al., 2013). CEBPA and

ATF5 are highly abundant liver-enriched transcription factors,

indicating the importance of transcriptional regulation in hepatic

function. Furthermore, a gene expression study showed that

these three genes were highly expressed in F-HEPs (Figure 1B).

Collectively, these data suggested that overexpressing these

factors may lead to the functional maturation of 3H cells.

To generate mature human hepatocytes from fibroblasts, we

combined the three factors with CEBPA, PROX1, and ATF5.

After overexpressing these factors in HEFs, we observed a dra-

matic morphological change of fibroblasts into epithelial cells in

1week. These cells proliferated rapidly in hepatocyte cultureme-

dium (HCM), with the doubling time ranging from 9 to 11 hr (Fig-

ure S1I). At 2 weeks postinfection, the replated cells showed the

typical morphology of primary human hepatocytes (Figures 1C

and1D). At about 25 days postinfection,p53 siRNAwas silenced,

as indicated by aGFP reporter (Figure S1J), and the induced cells

were transferred to a modified William’s E medium (Figures 1C

and S1I). Quantitative PCR results showed that the induced he-

patocyte-like cells expressedALB at a level that was comparable

to that of primary human hepatocytes (Figure 1E), which was

significantly higher than that of 3H cells (Figure S1F). We further

analyzed the reprogramming efficiency and found that 90% of

the induced cells were ALB positive and nearly 100% were a-1

antitrypsin (AAT) positive (Figures 1F and 1G). The secretion of

ALB was dramatically enhanced and was comparable to that of

primary human hepatocytes (Figure 1H). Furthermore, the four

major cytochrome P450 enzymes, CYP3A4, CYP1A2, CYP2C9,

and CYP2C19, were also expressed in the induced cells de-

tected by immunostaining (Figure 1I). Removal of any of these

six factors would lead to a substantial decrease in the expression

of drug metabolic enzymes and transporters (Figure S1K). These

results indicate that functional hepatic properties were obtained

in these induced hepatocyte-like cells, which we termed hiHeps.

hiHeps Possess the Typical Characteristics of Human
Hepatocytes
To evaluate hepatic fate conversion, we first analyzed typical he-

patic features. Immunofluorescence microscopy showed that

the epithelial marker E-cadherin (ECAD) was coexpressed with

ALB in hiHeps (Figure 2A). In addition, the fibroblast marker

COL1A1 was not detected (Figure S2A). These results indicate

a successful mesenchymal-epithelial transition in hiHeps. Next,

we further examined endogenous hepatic transcription network

activation in hiHeps. The RT-PCR results showed that the

endogenous expression of FOXA1, FOXA2, and FOXA3 (Zaret

et al., 2008) was activated (Figure 2B). LRH1, another core tran-

scription factor involved in the hepatic cross-regulatory network

(Nagaoka and Duncan, 2010), was also endogenously ex-

pressed in hiHeps (Figure 2B). We confirmed the expression of

FOXA2 and LRH1 using immunofluorescence (Figure S2B).

Additionally, fibroblast marker genes, including COL1A1,

PDGFRB, and THY1, were not detected in hiHeps (Figure 2B).

In accordance with p53 siRNA silencing (Figure S1J), we further

found that exogenous expression of HNF1A, HNF6, HNF4A,

ATF5, PROX1, and CEBPA was silenced in hiHeps (Figure 2C).

In addition, MYC was decreased to a level lower than that of

freshly isolated primary human hepatocytes, as revealed by
ell Stem Cell 14, 394–403, March 6, 2014 ª2014 Elsevier Inc. 395



Figure 1. Screening for Hepatic Critical Transcription Factors to Generate hiHeps

(A) Quantitative comparison of the expression of hepatic transcription factors in 3H cells, fetal liver cells (FLCs), and F-HEPs. n = 2. *p < 0.05; **p < 0.01;

***p < 0.001.

(B) Quantitative analysis of the abundance of hepatic transcription factors in four individual F-HEPs. n = 2.

(legend continued on next page)
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quantitative RT-PCR (qRT-PCR) (Figure 2D). Collectively, these

data indicate that hiHeps gain a hepatic transcription network.

Next, we evaluated hiHeps for functional characteristics of

human hepatocytes. hiHeps were competent for LDL uptake

(Figure 2E). We also observed hiHeps could incorporate indoc-

yanine green (ICG) from the medium and exclude the absorbed

ICG after withdrawal (Figure 2F). Oil red O staining in hiHeps

showed an accumulation of fatty droplets, and Periodic Acid-

Schiff (PAS) staining indicated glycogen synthesis (Figures 2G

and 2H). Similar to human adult hepatocytes, hiHeps were AFP

negative (Figure S2C). G banding analysis revealed that hiHeps

had a normal karyotype after 7 weeks of culture (Figure 2I). Be-

sides HEFs, we converted human adult foreskin fibroblasts using

the same factors and obtained similar results (Figures S2D–S2F).

Collectively, these results indicate that hiHeps exhibit typical

hepatic functional features.

We also compared the global gene expression patterns

between hiHeps and F-HEPs by RNA sequencing. Principle

component analysis and hierarchical clustering analysis re-

vealed that hiHeps established from different donors were

clustered with human hepatocytes and separated from human

fibroblasts, HepG2 cells, and human embryonic stem cell

(ESC)-derived hepatocytes (ES-Heps) (Figure 2J). Indeed, he-

patic transcription factors were upregulated and the expression

of fibroblast signature genes was downregulated in hiHeps (Fig-

ure 2K). Additionally, hiHeps displayed the gene expression

patterns of hepatocytes in a set of genes involved in lipoprotein,

cholesterol, fat, glucose, and drug metabolism (Figure 2K). Alto-

gether, these results indicate that hiHeps show a similar expres-

sion profile to primary human hepatocytes.
Establishment of the Central Network of Drug
Metabolism in hiHeps
To evaluate whether hiHeps expressed key enzymes in drug

metabolism, we quantitatively confirmed the expression in

hiHeps of five key CYP enzymes, CYP1A2, CYP2B6, CYP2C9,

CYP2C19, and CYP3A4. The five key CYPs are major phase I

enzymes that account for 60% of human drug oxidation (Zhou

et al., 2009). As the positive control, pooled F-HEPs from five in-

dividual donors were used. Notably, comparable mRNA levels of

these major CYPs could be detected in hiHeps and F-HEPs, in

contrast to their expression in hepatocytes derived from human

ESCs and HepG2 cells (Figure 3A). Next, we analyzed hiHeps for

the presence of phase II enzymes and phase III transporters,

which are important for the excretion of xenobiotic drugs. The

expression levels of these genes were similar to those in

F-HEPs (Figures 3B–3C and S3A). Additionally, hiHeps ex-

pressed a broad spectrum of phase I and phase II metabolic en-

zymes and phase III transporters (Figure S3B). Collectively,

these findings suggest that the central network of drug meta-
(C) Schematic view of the hiHep reprogramming diagram.

(D) The hepatic morphology of hiHeps.

(E) Quantitative analysis of ALBUMIN expression among hiHeps, HEFs, and F-H

(F and G) Reprogramming efficiency measured by flow cytometry analysis mark

(H) Quantitative analysis of ALBUMIN secretion among hiHeps, HEFs, and F-HE

(I) Immunofluorescence analysis of the expression of CYP3A4, CYP1A2, CYP2C

The scale bars represent 100 mm. Data are presented as mean ± SD. See also F

C

bolism was successfully established in hiHeps and resembled

that of pooled freshly isolated primary human hepatocytes.

Level of Key Drug Metabolic Activities in hiHeps Is
Comparable to that in Freshly Isolated Primary Human
Hepatocytes
To evaluate the drug metabolic activities of hiHeps, we first

focused on CYP3A4. Using ultraperformance liquid chromatog-

raphy-tandemmass spectrometry technology, we examined the

drug metabolic activity of CYP3A4 in hiHeps using two structur-

ally different substrates, testosterone and midazolam. Because

of the remarkable interindividual variability in drug clearance,

two batches of freshly isolated primary human hepatocytes

were used as the positive control. In contrast to the HepG2 cell

line, ES-Heps, and HEFs, hiHeps were able to metabolize the

two CYP3A4-selective substrates efficiently to a similar degree

as F-HEPs (Figure 3D). Furthermore, we found that themetabolic

activities of CYP1A2 and CYP2B6 in hiHeps were comparable to

that of F-HEPs (Figure 3D). The activities of CYP2C9 and

CYP2C19 in hiHeps were approximately 30% of F-HEPs (Fig-

ure 3D). The metabolic activities of all these CYP enzymes in

hiHeps were at least 100-fold higher than that of ES-Heps. These

data indicate that hiHeps exhibit comparablemetabolic activities

of the key CYP enzymes to that of freshly isolated primary human

hepatocytes.

To further evaluate the functional central network of drug

metabolism in hiHeps, we compared the expression of nuclear

receptors between hiHeps and F-HEPs, which are critical in

regulating the expression of metabolizing enzymes. Nuclear

receptors that are responsible for the xenobiotic metabolizing

system were expressed in hiHeps (Figure S3C). Moreover,

hiHeps responded to the standard inducers of CYP3A4,

CYP1A2, and CYP2B6 at the mRNA level (Figure S3D). Taken

together, these data suggest a functional establishment of the

nuclear receptor network in hiHeps.

To assess the potential application of hiHeps in studying hep-

atotoxicity, we quantified the acute toxicity of model hepatotox-

ins. As hepatotoxicity is the most common adverse event

resulting in drug failure (Sahi et al., 2010), the sensitivity of

drug toxicity is a key index for the potential application of human

hepatocytes in drug discovery. hiHeps showed a level of sensi-

tivity comparable to that of primary human hepatocytes when

incubated with a series of model hepatotoxins (Figure S3E), sug-

gesting the potential of using hiHeps for testing drug toxicity.

Repopulation of Tet-uPA/Rag2–/–/gc–/– Mouse Liver with
hiHeps
To investigate the capacity of hiHeps to repopulate mouse liver,

Tet-uPA (urokinase-type plasminogen activator)/Rag2�/�/gc�/�

mice were injected intrasplenically with hiHeps (Song et al.,

2009). The secretion of human ALBUMIN in mouse serum
EPs.

ed by ALB and AAT. n = 3. APC, allophycocyanin.

Ps by ELISA. n = 3.

9, and CYP2C19 in hiHeps. DAPI, 40,6-diamidino-2-phenylindole.

igure S1 and Table S1.
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Figure 2. Characterization of hiHeps In Vitro

(A) Immunofluorescence analysis of ALB and ECAD in hiHeps.

(B) Endogenous gene expression analysis of hepatic transcription factors and fibroblast markers in hiHeps by RT-PCR.

(C) The silence of exogenous genes detected by RT-PCR. Day 7, 7 days postinfection.

(D) Relative expression of MYC during the hepatic conversion process measured by qRT-PCR. Day 7 and day 14, 7 and 14 days postinfection. n = 2.

(E–H) Analysis of basic hepatic function in hiHeps, including LDL uptake (E), ICG uptake and release (F), oil red O staining (G), and PAS staining (H).

(I) G banding analysis of hiHeps demonstrating a normal human karyotype (44, XX).

(J) Principal component analysis was performed to compare global gene expression profiles in HEFs, HepG2 cells, ES-Heps, hiHeps, and F-HEPs.

Genes expressed at least 3-fold differently among HEFs, hiHeps, and F-HEPs were selected for further analysis. Left: a scatter plot of the expression

(legend continued on next page)
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increased gradually and the highest level reached was 313 mg/ml

at 7 weeks after hiHep transplantation (Figures 4A–4C), which

was 1,000-fold higher than ES-Heps and comparable to primary

human hepatocytes (Figure 4B). To analyze the engraftment

efficiency, hepatocytes were isolated from whole liver of two

mice and measured by flow cytometry analysis. The repopula-

tion efficiency was about 30% in the mouse that secreted

313 mg/ml human ALBUMIN (Figure 4C). No tumorigenesis was

observed 2 months after hiHep transplantation.

We also analyzed the grafts of hiHeps. Six weeks after

transplantation, clusters of cells expressing human ALB were

observed in the recipient mice (Figure 4D). To confirm the meta-

bolic function of hiHeps in vivo, CYP expression was analyzed.

The expression of major CYPs including CYP3A4, CYP2C9,

CYP1A2, CYP2E1, CYP2C19, andCYP2D6 (Figure 4D) indicated

that hiHeps were still functional in vivo. Collectively, these results

suggest that hiHeps can robustly repopulate the liver of Tet-uPA/

Rag2�/�/gc�/� mice and were functional in vivo.

DISCUSSION

Here, we show that human hiHeps are readily and reproducibly

generated from HEFs using a combination of hepatic fate

conversion factors HNF1A, HNF4A, and HNF6 together with the

maturation factors ATF5, PROX1, and CEBPA. Similar to primary

humanhepatocytes, hiHepsexhibitmany typical hepatic features,

including their epithelial morphology, expression of hepatocyte-

specific markers, basic functional properties of hepatocytes,

and global gene expression patterns. Importantly, an integral

spectrum of phase I and phase II drug-metabolizing enzymes

and phase III drug transporters is well established in hiHeps.

Furthermore, transplanted hiHeps can repopulate up to 30% of

the livers of Tet-uPA/Rag2�/�/gc�/� mice and secrete more than

300mg/mlhumanALBUMIN invivo. Therefore,wehavestrongevi-

dence that human hepatocytes with drug-metabolizing functions

can be generated from fibroblasts using lineage reprogramming.

One key question in lineage reprogramming is how to obtain

fully functional cells. In hepatic transdifferentiation, through the

expression of hepatic fate determination factors in fibroblasts,

mouse induced hepatocyte-like cells were generated with

several important hepatic characteristics (Huang et al., 2011;

Sekiya and Suzuki, 2011). However, incomplete hepatocyte dif-

ferentiation and expression of certain hepatoblast markers by

hiHeps are compatible with an immature or progenitor-like state

(Willenbring, 2011). In our study, we also found that certain

hepatic fate determination factors could reprogram HEFs into

hepatocyte-like cells (Figures S1A–S1E). However, these cells

are not functional until the addition of another three factors (Fig-

ures 1D–1H). The additional three factors promote the further

metabolic maturation of hiHeps (Figures 1I and S1G). This phe-

nomenon suggests that hepatic fate determination and hepatic

functional maturation might be governed by different master

genes and are somewhat independent of each other. To obtain
profiles on the planes spanned by the first and second principal componen

profiles.

(K) Genes that exhibited significantly different expression levels among genes

fibroblast markers were extracted.

Data are presented as mean ± SD. See also Figure S2 and Tables S2 and S3.

C

fully functional cells, the ectopic expression of cell fate determi-

nation factors may not be sufficient, and additional functional

maturation factors are required to promote this process.

The drug metabolic capacity of human hepatocytes is one of

the most important functions that distinguish hepatocytes from

other lineages and has broad applications in drug development.

Efforts to differentiate human pluripotent stem cells into hepato-

cytes have resulted in cells that were functionally immature. Our

recent study showed that human ES-Heps express CYP1A2 and

CYP3A4 (Zhao et al., 2013). However, the activities of these two

CYP enzymes were significantly lower than that of primary hepa-

tocytes. In another study, differentiated hepatocytes exhibited

CYP3A4 and CYP1A2 activities only comparable to that of

cultured primary hepatocytes (Ogawa et al., 2013). However, a

number of liver-essential functions are progressively lost with

time in cultured primary hepatocytes (Elaut et al., 2006). In our

study, the gold standard, freshly isolated primary human hepato-

cytes, was used as the positive control. Our hiHeps express

the key phase I (CYP3A4, CYP2C9, CYP2C19, CYP2B6, and

CYP1A2) and phase II drug-metabolizing enzymes and phase III

drug transporters at a level comparable to that of freshly isolated

primary humanhepatocytes. Importantly, themetabolic activities

of the five CYP enzymes in hiHeps were comparable to those in

freshly isolated primary human hepatocytes, suggesting the po-

tential application of hiHeps in evaluating drugs metabolized by

these CYP enzymes (Figure 3D). We were also able to detect

the expression of endogenous nuclear receptors related to xeno-

biotic metabolizing systems in these cells (Nakata et al., 2006)

(Figure S3C). Moreover, the expression of CYP3A4, CYP1A2,

and CYP2B6 was increased by the standard inducers (Fig-

ure S3D). In addition, because integrated metabolism pathways

(phase I and phase II enzymes and phase III drug transporters)

in hepatocytes are of vital importance for drug discovery (Castell

et al., 2006), we closely analyzed the drug metabolic network of

hiHeps. The expression pattern of genes encoding the drug-

metabolizing markers was similar to that in primary human hepa-

tocytes, implying an upregulation of the drug metabolic network

in hiHeps (Figures 3A–3C and S3A–S3C). Collectively, these re-

sults indicate the integral establishment of the central network

of functional drugmetabolism in hiHeps,making these cells a po-

tential alternative for preclinical screening assays.

Another key characteristic of human hepatocytes in drug

development is their sensitivity to drug toxicity. Human hepato-

cytes derived from human pluripotent stem cells have a relatively

low sensitivity to drug toxicity (Zhao et al., 2013). In our study, the

sensitivity of hiHeps to multiple model hepatotoxins is compara-

ble to that of primary human hepatocytes (Figure S3E), which

suggests that hiHeps could be a valuable alternative cell

resource in hepatotoxicity assays for new drug discovery. Impor-

tantly, our results demonstrate that the induced cells could be

expanded at a large scale at an early stage (Figures 1C and

S1I), and the function of hiHeps could be maintained for

16 days (Figure S3F). Considering the reprogramming efficiency
ts (PCs). Right: a dendrogram of the hierarchical clustering of expression

involved in lipoprotein, cholesterol, fat, glucose, and drug metabolism and

ell Stem Cell 14, 394–403, March 6, 2014 ª2014 Elsevier Inc. 399



Figure 3. Expression of Drug Metabolic-Associated Genes and Drug Metabolic Activities of hiHeps

(A–C) Quantitative analysis of the expression of drugmetabolic phase I (A) and phase II enzymes (B) and phase III transporters (C) in HEFs, HepG2 cells, ES-Heps,

hiHeps, and F-HEPs. The relative expression of each gene was normalized to HEFs; if not detected, it was normalized to HepG2 cells. n = 2.

(D) Metabolic activities of CYP3A4 (3A4-T, testosterone; 3A4-M, midazolam), CYP1A2 (phenacetin), CYP2B6 (bupropion), CYP2C9 (diclofenac), and CYP2C19

[(S)-mephenytoin] in hiHeps, ES-Heps, F-HEPs1, F-HEPs2, HepG2 cells, and HEFs were determined by HPLC-MS. n = 3. Two batches of freshly isolated primary

human hepatocytes (F-HEPs1 and F-HEPs2) were applied as the positive control. The results are presented as pmol/min per million cells.

Data are presented as mean ± SD. See also Figure S3 and Table S4.
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(Figures 1F and 1G), we can obtain more than 1011 functional hi-

Heps starting from 104 of fibroblasts (Figure 1I). These results

suggested that hiHeps could be used in a practical manner for

pharmaceutical development.

Hepatocyte transplantation is a promising alternative to ortho-

topic liver transplantation (Dhawan et al., 2010). However, the

limited supply of donor organs that can provide good-quality

cells remains a major challenge. In our study, hiHeps were able

to repopulate mouse liver robustly and secreted up to

313 mg/ml human ALBUMIN, which is two orders of magnitude

higher than recent studies using human hepatocytes derived

from human embryonic stem cells (Figures 4A and 4B) (Takebe

et al., 2013; Woo et al., 2012). Furthermore, transplanted hiHeps

expressed major CYP enzymes (Figure 4D), suggesting that

hiHeps retained drug metabolic function in vivo. Collectively,

hiHeps could be a potential cell source for the establishment of

a humanized mouse model and hepatocyte transplantation.

In conclusion, we generated human hepatocytes with drug-

metabolizing functions using the combined expression of cell

fate determination factors and cell maturation factors. This strat-

egy could potentially facilitate the generation of a fundamental

solution for creating various functional cell types. Further optimi-

zation of the combination of hepatic maturation factors would

probably lead to the fully functional maturation of hiHeps in the

future. The generation of functional human hepatocytes with

lineage reprogramming provides a way to obtain well-character-

ized, reproducible, and functional human hepatocytes for phar-

maceutical applications.

EXPERIMENTAL PROCEDURES

Generation of hiHeps

This study was approved by the Clinical Research Ethics Committee of the

China-Japan Friendship Hospital (ethical approval 2009-50) and Stem Cell

Research Oversight of Peking University (SCRO201103-03), and conducted

according to the principles of the Declaration of Helsinki. Human fibroblasts

were infected overnight and cultured in DMEM plus 10% fetal bovine serum

for 1 week before transfer into HCM (Lonza) for expansion. After 3 weeks of

culture, HCM was replaced by modified William’s E medium (Beijing Vitalstar

Biotechnology).

CYP Metabolism Assay

Drugmetabolic activity was evaluated using the traditional suspensionmethod

as previously described (Gebhardt et al., 2003). hiHeps were cultured in the

mediumwith 50 mM rifampicin, 50 mM b-naphthoflavone, and 1mM phenobar-

bital for 72 hr and refreshed every 24 hr. Cell viability of dissociated hiHeps,

HepG2 cells, ES-Heps, fibroblasts, and freshly isolated primary human hepa-

tocytes was measured by trypan blue. One milliliter of prewarmed incubation

medium (William’s E medium, 10 mM HEPES [pH 7.4], 2 mM GlutaMAX) was

added per 1 3 106 total cells (cell suspension). The substrate solutions were

prepared with the same incubation medium [400 mM testosterone, 10 mMmid-

azolam, 200 mMphenacetin, 1mMbupropion, 500 mM (S)-mephenytoin, 50 mM

diclofenac]. The reactions were started by mixing 250 ml of the substrate solu-

tion with 250 ml of cell suspension in a 5ml polystyrene round-bottom tube (BD
Figure 4. Repopulation of Tet-uPA/Rag2–/–/gc–/– Mouse Liver with hiHe

(A) Human ALBUMIN level in mouse serum was monitored by ELISA.

(B) Comparison of human ALB secretion in mouse serum among ES-Heps (n = 1

(C) Flow cytometry analysis of the engraftment efficiencies of hiHeps. Mouse 1 and

nuclei; PE, phycoerythrin.

(D) Expression of human ALBUMIN and CYPs in engrafted hiHeps revealed by im

antibody reacts with both human and mouse.

The scale bar represents 100 mm. Data are presented as mean ± SD.
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Falcon). The tubes were put in an orbital shaker in the incubator and the shaker

speed was adjusted to 210 rpm. After a 15–240 min incubation at 37�C, the
tubes were centrifuged at room temperature to collect the supernatant. The

reactions were stopped by addition of sample aliquots to tubes containing

triple the volume of quenching solvent (methanol) and frozen at �80�C.
Isotope-labeled reference metabolites were used as internal standards. Inter-

nal reference metabolites for testosterone, midazolam, (S)-mephenytoin,

diclofenac, bupropion, and phenacetin are 6b-hydroxytestosterone-[D7],

hydroxymidazolam-[13C3], 40-hydroxymephenytoin-[D3], 40-hydroxydiclofe-
nac-[13C6], hydroxybupropion-[D6], and acetomidophenol-[13C2, 15N],

respectively. The metabolites were used to make standard curves for the

metabolite analyses. Standard metabolites were 6b-hydroxytestosterone,

10-hydroxymidazolam, hydroxybupropion, 40-hydroxydiclofenac, (+/�)-40-hy-
droxymephenytoin, and acetaminophen. The metabolites were quantified

by Pharmaron using validated traditional LC-MS methods. The results are

expressed as picomoles of metabolite formed per minute and per million

cells. Chemicals were purchased from Sigma including b-naphthoflavone,

rifampicin, testosterone, midazolam, diclofenac, and phenacetin. Standard

metabolites and internal reference metabolites were purchased from BD

Biosciences. Phenobarbital was a kind gift from Jinning Lou.

Animals and Transplantation

Tet-uPA/Rag2�/�/gc�/� mice on a BALB/c background were purchased from

Beijing Vitalstar Biotechnology. hiHeps, ES-Heps, and primary human hepato-

cytes (2 3 106 cells/animal) were injected into the spleens of the mice. Blood

samples were collected and human ALBUMIN was quantified using the

Human Albumin ELISA Quantitation kit (Bethyl Laboratories). Livers of recip-

ient mice were embedded in OCT compound (Sakura) and then frozen in liquid

nitrogen. Cryostat sections (10 mm) were stained.

Statistical Analysis

For statistical analysis, a two-tailed unpaired t test was used. Results are

expressed as mean ± SD. p values are as follows: *p < 0.05; **p < 0.01;

***p < 0.001.
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