116 research outputs found

    Coevolution of Prostate Cancer and Bone Stroma in Three-Dimensional Coculture: Implications for Cancer Growth and Metastasis

    Get PDF
    [[abstract]]Human bone stromal cells, after three-dimensional coculture with human prostate cancer (PCa) cells in vitro, underwent permanent cytogenetic and gene expression changes with reactive oxygen species serving as mediators. The evolved stromal cells are highly inductive of human PCa growth in mice, and expressed increased levels of extracellular matrix (versican and tenascin) and chemokine (BDFN, CCL5, CXCL5, and CXCL16) genes. These genes were validated in clinical tissue and/or serum specimens and could be the predictors for invasive and bone metastatic PCa. These results, combined with our previous observations, support the concept of permanent genetic and behavioral changes of PCa epithelial cells after being either cocultured with prostate or bone stromal cells as three-dimensional prostate organoids or grown as tumor xenografts in mice. These observations collectively suggest coevolution of cancer and stromal cells occurred under three-dimensional growth condition, which ultimately accelerates cancer growth and metastasis

    Analysis of Mechanisms Associated with Loss of Infectivity of Clonal Populations of Borrelia burgdorferi B31MI

    Get PDF
    Numerous studies have provided suggestive evidence that the loss of plasmids correlates with the loss of infectivity of the Lyme disease spirochetes. In this study we have further investigated this correlation. Clonal populations were obtained from the skin of a mouse infected for 3 months with a clonal population of Borrelia burgdorferi B31MI. The complete plasmid compositions of these populations were determined using a combination of PCR and Southern hybridization. The infectivities of clones differing in plasmid composition were tested using the C3H-HeJ murine model for Lyme disease. While several clones were found to be noninfectious, a correlation between the loss of a specific plasmid and loss of infectivity in the clones analyzed in this report was not observed. While it is clear from recent studies that the loss of some specific plasmids results in attenuated virulence, this study demonstrates that additional mechanisms also contribute to the loss of infectivity

    Tumor-Stromal Interactions Influence Radiation Sensitivity in Epithelial- versus Mesenchymal-Like Prostate Cancer Cells

    Get PDF
    HS-27a human bone stromal cells, in 2D or 3D coultures, induced cellular plasticity in human prostate cancer ARCaPE and ARCaPM cells in an EMT model. Cocultured ARCaPE or ARCaPM cells with HS-27a, developed increased colony forming capacity and growth advantage, with ARCaPE exhibiting the most significant increases in presence of bone or prostate stroma cells. Prostate (Pt-N or Pt-C) or bone (HS-27a) stromal cells induced significant resistance to radiation treatment in ARCaPE cells compared to ARCaPM cells. However pretreatment with anti-E-cadherin antibody (SHEP8-7) or anti-alpha v integrin blocking antibody (CNT095) significantly decreased stromal cell-induced radiation resistance in both ARCaPE- and ARCaPM-cocultured cells. Taken together the data suggest that mesenchymal-like cancer cells reverting to epithelial-like cells in the bone microenvironment through interaction with bone marrow stromal cells and reexpress E-cadherin. These cell adhesion molecules such as E-cadherin and integrin alpha v in cancer cells induce cell survival signals and mediate resistance to cancer treatments such as radiation

    A Novel Invadopodia-Specific Marker for Invasive and Pro-Metastatic Cancer Stem Cells

    Get PDF
    IntroductionStem-like cancer cells or cancer stem cells (CSCs) may comprise a phenotypically and functionally heterogeneous subset of cells, whereas the molecular markers reflecting this CSC hierarchy remain elusive. The glycolytic enzyme alpha-enolase (ENO1) present on the surface of malignant tumor cells has been identified as a metastasis-promoting factor through its function of activating plasminogen. The expression pattern of surface ENO1 (sENO1) concerning cell-to-cell or CSC heterogeneity and its functional roles await further investigation.MethodsThe cell-to-cell expression heterogeneity of sENO1 was profiled in malignant cells from different types of cancers using flow cytometry. The subcellular localization of sENO1 and its functional roles in the invadopodia formation and cancer cell invasiveness were investigated using a series of imaging, molecular, and in vitro and in vivo functional studies.ResultsWe showed here that ENO1 is specifically localized to the invadopodial surface of a significant subset (11.1%-63.9%) of CSCs in human gastric and prostate adenocarcinomas. sENO1+ CSCs have stronger mesenchymal properties than their sENO1- counterparts. The subsequent functional studies confirmed the remarkable pro-invasive and pro-metastatic capacities of sENO1+ CSCs. Mechanistically, inhibiting the surface localization of ENO1 by downregulating caveolin-1 expression compromised invadopodia biogenesis, proteolysis, and CSC invasiveness.ConclusionsOur study identified the specific expression of ENO1 on the invadopodial surface of a subset of highly invasive and pro-metastatic CSCs. sENO1 may provide a diagnostically and/or therapeutically exploitable target to improve the outcome of patients with aggressive and metastatic cancers

    Design of experiments to study the impact of process parameters on droplet size and development of non-invasive imaging techniques in tablet coating

    Get PDF
    Atomisation of an aqueous solution for tablet film coating is a complex process with multiple factors determining droplet formation and properties. The importance of droplet size for an efficient process and a high quality final product has been noted in the literature, with smaller droplets reported to produce smoother, more homogenous coatings whilst simultaneously avoiding the risk of damage through over-wetting of the tablet core. In this work the effect of droplet size on tablet film coat characteristics was investigated using X-ray microcomputed tomography (XμCT) and confocal laser scanning microscopy (CLSM). A quality by design approach utilising design of experiments (DOE) was used to optimise the conditions necessary for production of droplets at a small (20 μm) and large (70 μm) droplet size. Droplet size distribution was measured using real-time laser diffraction and the volume median diameter taken as a response. DOE yielded information on the relationship three critical process parameters: pump rate, atomisation pressure and coating-polymer concentration, had upon droplet size. The model generated was robust, scoring highly for model fit (R2 = 0.977), predictability (Q2 = 0.837), validity and reproducibility. Modelling confirmed that all parameters had either a linear or quadratic effect on droplet size and revealed an interaction between pump rate and atomisation pressure. Fluidised bed coating of tablet cores was performed with either small or large droplets followed by CLSM and XμCT imaging. Addition of commonly used contrast materials to the coating solution improved visualisation of the coating by XμCT, showing the coat as a discrete section of the overall tablet. Imaging provided qualitative and quantitative evidence revealing that smaller droplets formed thinner, more uniform and less porous film coats

    The association of hydration status with physical signs, symptoms and survival in advanced cancer-The use of Bioelectrical Impedance Vector Analysis (BIVA) technology to evaluate fluid volume in palliative care: An observational study

    Get PDF
    Background Hydration in advanced cancer is a controversial area; however, current hydration assessments methods are poorly developed. Bioelectrical impedance vector analysis (BIVA) is an accurate hydration tool; however its application in advanced cancer has not been explored. This study used BIVA to evaluate hydration status in advanced cancer to examine the association of fluid status with symptoms, physical signs, renal biochemical measures and survival. Materials and methods An observational study of 90 adults with advanced cancer receiving care in a UK specialist palliative care inpatient unit was conducted. Hydration status was assessed using BIVA in addition to assessments of symptoms, physical signs, performance status, renal biochemical measures, oral fluid intake and medications. The association of clinical variables with hydration was evaluated using regression analysis. A survival analysis was conducted to examine the influence of hydration status and renal failure. Results The hydration status of participants was normal in 43 (47.8%), 'more hydrated' in 37 (41.1%) and 'less hydrated' in 10 (11.1%). Lower hydration was associated with increased symptom intensity (Beta = -0.29, p = 0.04) and higher scores for physical signs associated with dehydration (Beta = 10.94, p = 0.02). Higher hydration was associated with oedema (Beta = 2.55, p<0.001). Median survival was statistically significantly shorter in 'less hydrated' patients (44 vs. 68 days; p = 0.049) and in pre-renal failure (44 vs. 100 days; p = 0.003). Conclusions In advanced cancer, hydration status was associated with clinical signs and symptoms. Hydration status and pre-renal failure were independent predictors of survival. Further studies can establish the utility of BIVA as a standardised hydration assessment tool and explore its potential research application, in order to inform the clinical management of fluid balance in patients with advanced cancer

    Targeting L1 cell adhesion molecule expression using liposome-encapsulated siRNA suppresses prostate cancer bone metastasis and growth

    No full text
    [[abstract]]The L1 cell adhesion molecule (L1CAM) has been implicated in tumor progression of many types of cancers, but its role in prostate cancer and its application in targeted gene therapy have not been investigated. Herein, we demonstrated that the L1CAM was expressed in androgen-insensitive and highly metastatic human prostate cancer cell lines. The correlation between L1CAM expression and prostate cancer metastasis was also validated in serum samples of prostate cancer patients. Knockdown of L1CAM expression in prostate cancer cells by RNA interference significantly decreased their aggressive behaviors, including colony formation, migration and invasion in vitro, and tumor formation in a metastatic murine model. These anti-malignant phenotypes of L1CAM-knockdown cancer cells were accompanied by G0/G1 cell cycle arrest and suppression of matrix metalloproteinase (MMP)-2 and MMP-9 expression and nuclear factor NF-κB activation. In vivo targeting of L1CAM expression using liposome-encapsulated L1CAM siRNAs effectively inhibited prostate cancer growth in mouse bone, which was associated with decreased L1CAM expression and cell proliferation by tumor cells. These results provide the first evidence for L1CAM being a major contributor to prostate cancer metastasis and translational application of siRNA-based L1CAM-targeted therapy
    corecore