24 research outputs found

    Uterine scoring system for reproduction scoring correlation with pregnancy rate in infertility patients undergoing intracytoplasmic sperm injection and embryo transfer

    Get PDF
    Background: Infertility is defined as failure to conceive a clinical pregnancy after 12 months or more of regular unprotected intercourse. The birth of Louis Brown opened door to whole new world. Science of reproduction unfolded with better understanding of physiology and pharmacology of gonadotropins. Improved stimulation protocol, and lab facilities are available for IVF and intracytoplasmic sperm injection (ICSI). The objective of this study was to study relation between uterine scoring system for reproduction (USSR) scoring and pregnancy rate in patients undergoing ICSI and embryo transferred.Methods: A prospective observational study was conducted. Study comprised 48 women visiting with infertility for ICSI and embryo transfer. Baseline scan done on day2 of menses. Patients started on estradiol valerate for endometrial preparation. Transvaginal sonography done on 10th day of menstrual cycle for USSR scoring. USSR scoring includes parameters such as endometrial thickness, endometrial layering, myometrial contractions, myometrialechogenecity, uterine artery Doppler flow, endometrial blood flow, myometrial blood flow.Results: Out of total 48 infertility patients for embryo transfer 22 conceived, which gives 45.83% pregnancy rate. No patients had a perfect score of 20. Patients with score of 17-19 had pregnancy rate of 66%. Endometrial thickness of 10-14mm gave optimum result of 52%. Pulsatality index <2.19 was associated with pregnancy rate of 66%.Conclusions: USSR scoring is highly indicative of good pregnancy outcome in patients undergoing ICSI and embryo transfer. Endometrial morphology and thickness was strongly correlated with successful pregnancy outcome

    ICSI outcome in surgically retrieved sperm compared with ejaculated sperm control

    Get PDF
    Background: Globally, the prevalence of infertility is around 10% of the total population. 30% of these have male factor infertility. Azoospermia is found in 1% of men, in 20% of which, the etiology is a bilateral obstruction of the male genital tract while others have non obstructive azoospermia. In azoospermic men sperms are microsurgically retrieved from epididymis and testes by TESA and PESA respectively. The aim of this study was to evaluate the outcomes of intracytoplasmic sperm injection ICSI using surgically retrieved sperm of azoospermic men either obstructive or nonobstructive and to compare it with ejaculated sperms in men having severe oligospermia.Methods: This was retrospective cohort study conducted based on the data collected from our reproductive endocrinology and infertility unit, 126 ICSI cycles performed during the period of 5 years were taken and divided into two groups, one with patients having ejaculated sperms with oligospermia and other group with patients who had surgically retrieved normal sperms due to azoospermia. Outcome of these ICSI cycles included fertilization, cleavage, biochemical and clinical pregnancy was assessed.Results: In present study it was found that ICSI outcome was comparable in both the groups with ejaculated sperm and surgically retrieved sperm as fertilization rate (72% vs 65%), Implantation Rate (58 vs 51%), clinical pregnancy rate (CPR) (51% vs 44.82%) observed with ejaculated or retrieved sperm group respectively showed no statistical difference.Conclusions: Present study shows that minimally invasive techniques of PESA and TESA can be successfully performed to retrieve sperm for ICSI in the treatment of azoospermic men which gives them the chance to father their biological child. The result of this study indicates that treatment outcomes of PESA/TESA-ICSI cycles compare favourably with that of ICSI using ejaculated sperm

    Granulocyte colony stimulating factor in COS-IUI cycles

    Get PDF
    Background: An unresolved assisted reproductive technique problem is the unresponsive, thin endometrium. Approximately 0.6%-0.8% of patients do not reach the minimum thickness. Using endometrial co culture, G-CSF>130pg/mL was associated with significantly improved pregnancy rate in ART cycles. This is a retrospective study that included all unexplained infertility cycles with controlled ovulation stimulation –IUI protocols. Aim was to note the effects of G-CSF on thin endometrium and pregnancy rate in G-CSF administered COS-IUI cycles.Methods: This study was done in the IVF department of Dr D Y Patil University, Navi Mumbai, India. Thin endometrium was defined as ET<7mm on transvaginal ultrasound. Clomiphene citrate was used for ovulation induction in strengths of 100mg or 50mg on day 2 of their cycle based on the antral follicle count. Trigger used was injection 10,000µg urinary hCG. On the same day when the trigger injection was given, 300 units G-CSF was instilled into the uterus. Post 36 hours IUI was done under aseptic precautions .After 16 days β-hCG levels were done to determine whether there is a pregnancy.Results: In present study,200 COS-IUI cycles were analysed.50 cycles showed a thin endometrium and in them G-CSF was used. The chemical pregnancy rates was 32%, the intrauterine pregnancy rate was 28%, ectopic pregnancy rate was 4%.Conclusions: Present study concluded that G-CSF increases ET significantly in COS-IUI cycles in the event of thin endometrium. In view of small cohort size further larger randomized controlled trials may be required  to substantiate the above conclusions

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Fig 2 -

    No full text
    Survey response data from various participating centres depicting the impact of pandemic on routine diagnostics (A)Effect on kits, consumables and manpower (B) Effect on volume of test requisitions (C) Effect on revenue generated from diagnostics (D) Effect on work profile and pay (E) Effect on Turn-around time (TAT) for testing and discontinuation of tests (F) Response for participation in EQAS scheme.</p
    corecore