32 research outputs found

    ODZ1 allows glioblastoma to sustain invasiveness through a Myc-dependent transcriptional upregulation of RhoA

    Get PDF
    Long-term survival remains low for most patients with glioblastoma (GBM), which reveals the need for markers of disease outcome and novel therapeutic targets. We describe that ODZ1 (also known as TENM1), a type II transmembrane protein involved in fetal brain development, plays a crucial role in the invasion of GBM cells. Differentiation of glioblastoma stem-like cells drives the nuclear translocation of an intracellular fragment of ODZ1 through proteolytic cleavage by signal peptide peptidase-like 2a. The intracellular fragment of ODZ1 promotes cytoskeletal remodelling of GBM cells and invasion of the surrounding environment both in vitro and in vivo. Absence of ODZ1 by gene deletion or downregulation of ODZ1 by small interfering RNAs drastically reduces the invasive capacity of GBM cells. This activity is mediated by an ODZ1-triggered transcriptional pathway, through the E-box binding Myc protein, that promotes the expression and activation of Ras homolog family member A (RhoA) and subsequent activation of Rho-associated, coiled-coil containing protein kinase (ROCK). Overexpression of ODZ1 in GBM cells reduced survival of xenografted mice. Consistently, analysis of 122 GBM tumour samples revealed that the number of ODZ1-positive cells inversely correlated with overall and progression-free survival. Our findings establish a novel marker of invading GBM cells and consequently a potential marker of disease progression and a therapeutic target in GBM

    Prognostic molecular markers with no impact on decision-making: the paradox of gliomas based on a prospective study

    Get PDF
    This study assessed the prognostic value of several markers involved in gliomagenesis, and compared it with that of other clinical and imaging markers already used. Four-hundred and sixteen adult patients with newly diagnosed glioma were included over a 3-year period and tumour suppressor genes, oncogenes, MGMT and hTERT expressions, losses of heterozygosity, as well as relevant clinical and imaging information were recorded. This prospective study was based on all adult gliomas. Analyses were performed on patient groups selected according to World Health Organization histoprognostic criteria and on the entire cohort. The endpoint was overall survival, estimated by the Kaplan–Meier method. Univariate analysis was followed by multivariate analysis according to a Cox model. p14ARF, p16INK4A and PTEN expressions, and 10p 10q23, 10q26 and 13q LOH for the entire cohort, hTERT expression for high-grade tumours, EGFR for glioblastomas, 10q26 LOH for grade III tumours and anaplastic oligodendrogliomas were found to be correlated with overall survival on univariate analysis and age and grade on multivariate analysis only. This study confirms the prognostic value of several markers. However, the scattering of the values explained by tumour heterogeneity prevents their use in individual decision-making

    The TERT rs2736100 Polymorphism and Cancer Risk: A Meta-analysis Based on 25 Case-Control Studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The association between the <it>TERT rs2736100 </it>single nucleotide polymorphism (SNP) and cancer risk has been studied by many researchers, but the results remain inconclusive. To further explore this association, we performed a meta-analysis.</p> <p>Methods</p> <p>A computerized search of PubMed and Embase database for publications on the <it>TERT rs2736100 </it>polymorphism and cancer risk was performed and the genotype data were analyzed in a meta-analysis. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association. Sensitivity analysis, test of heterogeneity, cumulative meta-analysis and assessment of bias were performed in our meta-analysis.</p> <p>Results</p> <p>A significant association between the <it>TERT rs2736100 </it>polymorphism and cancer susceptibility was revealed by the results of the meta-analysis of the 25 case-control studies (GG versus TT: OR = 1.72, 95% CI: 1.58, 1.88; GT versus TT: OR = 1.38, 95% CI: 1.29, 1.47; dominant model-TG + GG versus TT: OR = 1.47, 95% CI: 1.37, 1.58; recessive model-GG versus TT + TG: OR = 1.37, 95% CI 1.31, 1.43; additive model-2GG + TG versus 2TT + TG: OR = 1.30, 95% CI: 1.25, 1.36). Moreover, increased cancer risk in all genetic models was found after stratification of the SNP data by cancer type, ethnicity and source of controls.</p> <p>Conclusions</p> <p>In all genetic models, the association between the <it>TERT rs2736100 </it>polymorphism and cancer risk was significant. This meta-analysis suggests that the <it>TERT rs2736100 </it>polymorphism may be a risk factor for cancer. Further functional studies between this polymorphism and cancer risk are warranted.</p

    Protein tyrosine phosphatases in glioma biology

    Get PDF
    Gliomas are a diverse group of brain tumors of glial origin. Most are characterized by diffuse infiltrative growth in the surrounding brain. In combination with their refractive nature to chemotherapy this makes it almost impossible to cure patients using combinations of conventional therapeutic strategies. The drastically increased knowledge about the molecular underpinnings of gliomas during the last decade has elicited high expectations for a more rational and effective therapy for these tumors. Most studies on the molecular pathways involved in glioma biology thus far had a strong focus on growth factor receptor protein tyrosine kinase (PTK) and phosphatidylinositol phosphatase signaling pathways. Except for the tumor suppressor PTEN, much less attention has been paid to the PTK counterparts, the protein tyrosine phosphatase (PTP) superfamily, in gliomas. PTPs are instrumental in the reversible phosphorylation of tyrosine residues and have emerged as important regulators of signaling pathways that are linked to various developmental and disease-related processes. Here, we provide an overview of the current knowledge on PTP involvement in gliomagenesis. So far, the data point to the potential implication of receptor-type (RPTPδ, DEP1, RPTPμ, RPTPζ) and intracellular (PTP1B, TCPTP, SHP2, PTPN13) classical PTPs, dual-specific PTPs (MKP-1, VHP, PRL-3, KAP, PTEN) and the CDC25B and CDC25C PTPs in glioma biology. Like PTKs, these PTPs may represent promising targets for the development of novel diagnostic and therapeutic strategies in the treatment of high-grade gliomas

    Design and Discovery of 2-Arylquinazolin-4-ones as Potent and Selective Inhibitors of Tankyrases

    No full text
    [Image: see text] Tankyrases (TNKSs) are poly(ADP-ribose)polymerases (PARPs) that are overexpressed in several clinical cancers. They regulate elongation of telomeres, regulate the Wnt system, and are essential for the function of the mitotic spindle. A set of 2-arylquinazolin-4-ones has been designed and identified as potent and selective TNKS inhibitors, some being more potent and selective than the lead inhibitor XAV939, with IC(50) = 3 nM vs. TNKS-2. Methyl was preferred at the 8-position and modest bulk at the 4-position of the 2-phenyl group; electronic effects and H-bonding were irrelevant, but charge in the 4′-substituent must be avoided. Molecular modeling facilitated initial design of the compounds and rationalization of the SAR of binding into the nicotinamide-binding site of the target enzymes. These compounds have potential for further development into anticancer drugs
    corecore